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Abstract

This study deals with the Berth Allocation Problem (BAP) in bulk ports which are NP-
hard problems. Bulk cargo is one that is transported in large quantities without packaging.
The bulk terminals carry out the loading through devices called shiploaders. Metaheuristics
such as Genetic Algorithms, Tabu Search, Greedy Randomized Adaptive Search Procedure
(GRASP) and Simulated Annealing (SA) have been implemented for BAP in bulk ports.
Other studies have used simulation for the BAP; however, there is little research that uses
simulation-optimization approaches, mainly using the Simheuristic method. Simheuristics
extend metaheuristics by adding a simulation layer that allows the optimization component to
deal with scenarios under uncertainty.This short paper proposes the scheduling of vessels with
the variation of shiploaders in bulk ports using GRAPS or SA metaheuristics in a simulated
environment to make a comparison. Initially, the SA and GRASP metaheuristics have been
implemented for the BAP in bulk ports without simulation. This extended abstract of work-
in-progress proposes a simheuristic approach for addressing the berth allocation problem in
bulk ports. Stochastic loading times and stochastic set up times will be considered in a bulk
terminal to show the use of the resources used by the port. The simulation model discrete
BAP with metaheuristics will be built using FlexSim Software 2023. An optimization cycle
will be scheduled. This cycle consists of configuring an optimization loop using C++ and
FlexSim. The purpose is to obtain results from stochastic instances with the Simheuristics
to minimize the total penalty cost. Keywords: Simheuristics, Scheduling, GRASP, SA,
BAP.
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1 Introduction

The adaptive large neighborhood search (ALNS) is a metaheuristic that extends the large neigh-
borhood search by selecting removal and insertion operators adaptively [4]. The performance of
the ALNS heavily depends on the operators chosen.

The goals of this review are to classify operators using consistent terminology, analyze their
performance and establish a common basis for future research. To achieve these goals, we conduct
a network meta-analysis of 211 articles that meet our criteria, and we employ incomplete pairwise
comparison matrices, similar to rankings used in sports, to rank the operators.

Our review makes the following contributions: (1) We propose a consistent nomenclature and
classification scheme for the existing operators. (2) We conduct a rigorous analysis of the perfor-
mance of different operators, helping researchers make informed decisions when selecting operators
for their specific problem. (3) We identify key design principles, which can serve as guidelines
for designing future ALNS implementations. (4) We discuss best practices and future research
directions for not only ALNS but also for metaheuristics in general.

2 Research methodology: Network meta-analysis

In terms of methodology, we employ a network meta-analysis to systematically review remvoval and
insertion operators. A network meta-analysis is a statistical approach that summarizes research
and compares multiple treatments used in various studies. Our study is inspired by the works of
[3] and [5]. In contrast to their work, our study goes further by comparing not just two treatments
(i.e., ALNS versus non-adaptive LNS) but several treatments (i.e., several operators).

2.1 Identification and review of studies

We identify relevant studies by searching for publications with adaptive large neighborhood search
in the title on Google Scholar following the procedure of [5]. In addition, we search for articles with
adaptive large neighborhood search or ALNS as keywords in SCOPUS following the procedure of
[3]. We identified a total of 211 relevant studies. We reviewed these studies in chronological order
and classified the operators used within them.

2.2 Ranking

We create a ranking of operators based on their performance in identified studies. The two most
common methods to assess the performance are the frequency-based and ablation-based performance
analysis. The frequency-based performance analysis shows the number of times the operators have
been applied when solving a set of test instances. The ablation-based performance analysis assesses
the performance of the operator by comparing the results when the operator is present compared to
when the operator is excluded from the ALNS. We conduct pairwise comparisons for each operator
in every study, use these to construct a pairwise comparison matrix and ultimately derive a ranking
of the performance of operators. The ranking of operators based on an incomplete comparison
matrix is not trivial and is similar to ranking teams or players in sports [1]. The incomplete
pairwise comparison matrix A is used to determine a weight vector w = (w1, w1, . . . , wn), where
the elements ai,j are estimated by wi

wj
and

∑n
i=1 wi = 1. We use the logarithmic least squares

method to determine w. Missing values can be determined by solving linear equations [2], [1].
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3 Sample results

3.1 Removal operators

Classification We classify removal operators according to the amount of information they use
to determine the set of removed customers. Simple removal operators do not use information on
current or previous solutions. More advanced operators use information derived from the current
solution. The most advanced operators use information from the current and previous solutions,
taking the history of the search into account.

Naming convention We suggest using a consistent and informative convention, as follows.

(1) Removal: (2) criteria - (3) restricted set of removal candidates - (4) seed

The naming convention indicates that it is a removal operator (1). The components (2-4) provide
clarity on three key aspects of the removal operator:

(2) What is the criteria used to determine which customers are removed?
(3) Is the set of customers that can be removed restricted in any way?
(4) Does the removal operator use a seed customer/route?

Ranking Table 1 shows the results when deriving the weight vector w (see Section 2.2). The
higher the weight, the better the operator. We also show the number of comparisons n. The most
frequently used removal operators (standard set) occupy ranks three to five: R1 ranks fifth, R16
ranks fourth, and R13 ranks third. The two sequence-based removal operators R9 and R10 occupy
the first and second rank but are not even among the top 10 most frequently used operators. This
suggests that adding one of these two operators to the standard set may improve its performance.
Despite this, the ranking confirms that the standard set remains a solid choice for ALNSs.

Table 1. Top 10 ranked removal operators

# Removal operator Weight n

1 R9: All customers - from randomly selected sequence within concatenated routes 0.1248 15
2 R10: All customers - from one of two Kruskal clusters from randomly selected route 0.0878 21
3 R13: A-posteriori score related customers - to seed customer 0.0641 112
4 R16: Worst cost customers 0.0592 164
5 R1: Random customers 0.0535 205
6 R19: All customers - from random route - multiple 0.0528 40
7 R5: A-priori distance related customers - to static seed customer 0.0509 31
8 R18: All customers - from random route - single 0.0495 80
9 R12: A-posteriori distance related customers - to seed customer 0.0382 8
10 R4: Random customers and their nearest neighbor 0.0371 17

3.2 Insertion operators

Classification We classify insertion operators based on how they determine in which position
the previously removed customers are inserted. Random insertion operators insert customers at a
random position. Best cost insertion operators select the position that results in the least increase
in objective value. Best cost insertion operators with constrained options do not evaluate each and
every insertion position. Best timing insertion operators use time criteria instead of the objective
value. Finally, look-ahead insertion operators overcome the myopic behavior of best insertion oper-
ators by incorporating information on the effect of inserting the current customer on the insertion
of following customers. The second criteria used to classify insertion operators is the order in which
the list of insertion candidates is sorted.

Naming convention We suggest using a naming convention that reflects firstly that it is an
insertion operator and secondly how customers are inserted.

(1) Insertion: (2) order - (3) position - (4) noise - (5) restricted set of insertion positions

The components (2-5) describe four key aspects of the insertion operator:
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(2) Does the operator sort the list of removed customers?
(3) Into which position is the selected customer inserted?
(4) Is the chosen position deterministic or does it vary by applying noise?
(5) Is the set of insertion positions restricted?

Ranking Table 2 shows the results of deriving the weight vector w. I13 ranks first, being superior
to other look-ahead insertion operators, and in particular dominating I11 which achieves rank 6.
Note that the difference in weights is significant with a sufficiently large number of comparisons
(53 and 26). Regarding insertion order, regret-based ordering methods appear to be more efficient
than random and removal ordering methods, with the exception of I5, which ranks third. Regarding
insertion position, at best position is the method of choice, other orders are either infrequently used
or show inferior performance, such as at random position (rank 10). To summarize, we suggest that
the standard set of insertion operators should include I13 instead of I11, and I5 because of its
simplicity, instead of I7.

Table 2. Top 10 ranked insertion operators

# Insertion operator Weight n

1 I13: Customer with highest position regret - at best position 0.1847 53
2 I12: Customer with highest route regret - at best position - with noise 0.1179 8
3 I5: In random order - at best position 0.0927 22
4 I14: Customer with highest position regret - at best position - with noise 0.0912 26
5 I7: Customers with lowest cost first - at best position 0.0862 72
6 I11: Customer with highest route regret - at best position 0.0807 26
7 I8: Customers with lowest cost first - at best position - with noise 0.066 29
8 I3: In removal order - at best position 0.0631 29
9 I10: In random order - at best position - restricted to random route 0.053 7
10 I1: In removal order - at random position 0.0463 7

4 Conclusion

We conducted a thorough analysis of the removal and insertion operators used in ALNS for VRPs
by reviewing 211 relevant articles. Our analysis revealed a total of 1266 removal operators (an
average of 6 per ALNS) and 788 insertion operators (an average of 3.73 per ALNS). We identified
57 distinct removal operators and 42 insertion operators and established a consistent nomencla-
ture. Furthermore, we ranked the operators using an incomplete pairwise comparison matrix and
found a slight discrepancy between the most frequently used and the most effective operators.
These findings provide valuable insights into the effectiveness of different operators and can assist
researchers in selecting appropriate operators for their specific VRP.
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Abstract: Metaheuristic algorithms have been recognized for their effectiveness in solving non-
convex and non-linear complex optimization problems. These algorithms are influenced by land-
scape bias, guided by objective function values, and algorithmic operator bias directed by the op-
erator used in the algorithms. The presence of algorithmic operator bias, also known as structural
bias, forces the population to revisit a particular region, badly affecting the algorithm’s exploration
capacity. Also, since the population revisits the same place without gaining new information, it
increases computational costs and slows the convergence rate. Therefore, it is crucial to identify
and address structural bias to enhance algorithm performance and reduce computational time. To
the best of our knowledge, no previous study has focused on investigating the structural bias of
the Sine Cosine Algorithm (SCA) in the existing literature. Therefore, the main objective of this
study is to examine the structural bias present in the SCA, a widely used metaheuristic algorithm.
To investigate structural bias signature test is employed. Additionally, average Euclidean distances
of the population is calculated to assess spatial relationships and overall distribution. Our analysis
uncovers a prominent bias in the SCA towards the axes and the origin, suggesting a strong tendency
to converge towards specific regions within the search space. By understanding and characterizing
this bias, we provide valuable insights into the behavior of the SCA, which can contribute to the
research community’s understanding and guide future improvements in algorithm design.

keywords: Metaheuristic algorithm, Sine Cosine Algorithm, Structural bias, Signature test,
Theoretical analysis.

1 Introduction

Optimization techniques play a crucial role in solving real-life optimization problems. As problem
complexity increases, newer and more efficient optimization algorithms are needed. Metaheuris-
tic algorithms have been proposed and have become popular for solving non-convex optimization
problems. The survey paper [1] highlighted the top 10 metaheuristic algorithms in terms of cita-
tion as follows: Particle Swarm Optimization (PSO) [2], Genetic Algorithm (GA) [3], Simulating
Annealing [4], Differential Evolution [5], Ant Colony Optimization [6], Tabu search [7], Grey Wolf
Optimization [8], Artificial Bee Colony [9], Cuckoo Search [10], and Harmony Search [11]. As of the
current date, there exist more than 540 metaheuristic algorithms in the literature. An exhaustive
survey of the state-of-the-art can be found in the work by [1].

However, only a limited amount of research such as [12–14] have been dedicated to under-
standing the behavior of these algorithms [15]. Most of the proposed algorithms rely solely on
simulation results, indicating a pressing need for in-depth analysis to comprehensively understand
the behavior of these algorithms. Recent studies [1, 16] strongly emphasize the necessity for a
thorough examination of these algorithms to gain deeper insights into their characteristics and
performance. Motivated by this gap in knowledge, the primary focus of this study is to gain a
deeper understanding of the population dynamics of the algorithm under specific circumstances.

Common to all population-based optimization algorithms are two essential components: (i) a
means of evaluating and discriminating solutions, and (ii) a sequential collection of mechanisms
that modify solutions through various operators [15]. Upon closer examination of these algorithms’
mechanisms, we observe the following pattern: an initial set of feasible solutions is generated ran-
domly, and their objective function values are evaluated. This set is then iteratively updated using
operators that balance exploration and exploitation, two contrasting yet crucial aspects. The ability
to explore new regions of the search domain and exploit promising areas are fundamental strategies
in these algorithms [19]. Surprisingly, despite decades of research on population-based optimization
algorithms, a precise definition of exploration and exploitation is still lacking. Only a handful of
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studies have been conducted to understand the algorithms’ exploration-exploitation trade-off, with
a comprehensive review available in [20]. Current consensus defines exploration as the process of
venturing into entirely new regions of the search space, while exploitation entails visiting areas
within the vicinity of previously explored solutions. Achieving an appropriate balance between ex-
ploration and exploitation remains a critical research question in Computational Intelligence (CI)
[21].

Metaheuristic algorithms are impacted by two key factors: landscape bias and algorithmic
operator bias. Landscape bias directs the population towards improved objective function values,
while algorithmic operator bias steers the population towards specific locations within the search
domain. Within the context of these algorithms, the latter factor is referred to as “structural bias”
in [22]. It compels the population to revisit a particular area of the search domain, leading to
increased computing costs without yielding any new information. Hence, detecting structural bias
is essential for any algorithm. In Figure 1, the illustration showcases the impact of structural bias
on population movement. The figure demonstrates that the subsequent position (Xt+1

i ) of the
candidate is influenced by the combined effect of the landscape and the structural bias exerted on
the current position (Xt

i ). Unfortunately, there is no study or technique exist in literature that
measure these two force quantitatively.

In an ideal algorithm, the structural force or bias should be non-existent, allowing candidates
to move freely towards optimal solutions. However, when a structural bias is present, it compels
the population to revisit a specific region without acquiring any new information. This not only
increases the computational cost but also delays the convergence rate. Consequently, it becomes
crucial to detect and eliminate structural bias in order to enhance the algorithm’s performance.
The focus of this study is solely on identifying the presence of structural bias.

The signature test, introduced by Clerc [23], is a methodology utilized to identify structural
bias in stochastic algorithms. While some theoretical studies have examined different type of bias
of algorithms such as GA, PSO, ABC, ACO, and DE, there has been limited analysis conducted
on other algorithms. Notably, no research has been conducted to analyze the structural bias of
Sine Cosine Algorithm (SCA) [24]. Therefore, In this study, we focus on detecting the structural
bias of one of such popular but less theoretical analysed algorithm SCA using signature tests.

The remainder of this paper is presented as follows: Section 2 provide a brief description of
Sine Cosine Algorithm. Section 3 covers structural bias and the signature test. Section 4 presents
the results of our simulation experiments. Finally, Section 5 summarizes our findings and proposes
directions for future research.

2 Sine Cosine Algorithm

In the realm of metaheuristic optimization, various algorithms like GA, PSO, DE, ABC, and ACO
have been extensively studied in diverse contexts. However, there exist relatively new algorithms
that have not received as much theoretical attention. This paper focuses on one such algorithm,
namely the Sine Cosine Algorithm (SCA).

Introduced by Mirjalili in 2015 [24], SCA is a population-based metaheuristic algorithm inspired
by the mathematical properties of sine and cosine functions. It is specifically designed to tackle
optimization problems. Like other metaheuristic algorithms, SCA starts with a randomly initialized
set of solutions. The position update of each solution is determined by Equations (1) and (2):

Xt+1
i = xt

i + r1 × sin(r2)× |r3P t
i −Xt

i | (1)

Xt+1
i = Xt

i + r1 × cos(r2)× |r3P t
i −Xt

i | (2)

Here, Xt
i represents the current solution’s position in the i-th dimension at the t-th iteration,

while r1, r2, and r3 denote random numbers. The parameter Pi represents the position of the
destination point in the i-th dimension, and —— denotes the absolute value. These equations are
utilized in SCA as shown in Equation (3):

xt+1
i =

{
Xt

i + r1 × sin(r2)× |r3P t
i −Xt

i | if r4 < 0.5

Xt
i + r1 × cos(r2)× |r3P t

i −Xt
i | if r4 ≥ 0.5

(3)

r4 is a uniformly distributed random number in the interval [0, 1].
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The SCA algorithm encompasses four main parameters: r1, r2, r3, and r4. r1 determines the
movement direction for the next position, either towards or away from the solution-destination
space. r2 governs the extent of movement towards or away from the destination. r3 introduces a
random weight for the destination, emphasizing (r3 > 1) or de-emphasizing (r3 < 1) its effect
on defining the distance. Finally, r4 equally switches between the sine and cosine components in
Equation (3).

During the initial half of the iterations, r1 contributes to exploration, while in the latter half,
it prioritizes exploitation. Mathematically, r1 is defined as:

r1 = a− a
t

T
(4)

Here, t represents the current iteration, T is the maximum number of iterations defined as a
termination criterion for SCA, and the constant ’a’ is typically set to 2.

Figure ?? visually illustrates the effects of sine and cosine functions in Equations (1) and (2)
on the next position of a solution. For more details on SCA and its source code, refer to [24].

3 Signature Test

In order to identify structural bias in an iterative optimization algorithm, it is necessary to separate
the effects of the algorithm’s operators from the effects of the optimization landscape. To accomplish
this, Clerc proposed the signature test [23] in 2015.

To create the signature of the stochastic algorithm, a 2D plot of 10, 000 feasible solutions
is generated within the search region [0, 1]2 ∈ R2 using the constant single objective function
f0 defined by Eq. (5). The test algorithm will be performed ten times, generating 1000 feasible
solutions each time. These points are then superimposed on a single graph for analysis.

Min. f0 : [0, 1]2 → [0, 1], where ∀x, f0(x) = 1 (5)

If the algorithm uses a greedy selection operator, it can be replaced with a random selection
operator to completely eliminate the operator’s effect. Clearly, the optima of such function also
follow a uniform distribution. By utilizing f0 as the objective function to minimize with a rea-
sonable computational budget, the final positions obtained should also be uniformly distributed
throughout the search space. Therefore, any non-uniformity observed in the distribution of the
final positions could suggest the presence of structural bias. One primary method to identify such
deviations is through visual analysis of the positions of the feasible solutions. When comparing
two or more algorithms, visualization may not be effective, requiring the adoption of statistical
measures. However, since this study solely focuses on a single algorithm, visual analysis is sufficient
to identify any existing bias.

4 Simulation Results

To generate signatures, we performed independent simulations of SSA for 10 independent runs,
with a population size of 1000 per run. Each run consisted of 50 iterations. We analyzed the
population movement during the first five iterations, as well as the population after the 10th, 15th,
20th, 25th, 30th, 35th, 40th, 45th, and 50th iterations. By overlaying the corresponding iterations
from all 10 runs using the signature test, we obtained a total of 10, 000 feasible solutions plotted for
each iteration. The simulations were implemented in Python and executed on a system equipped
with an Intel(R) Core(TM) i7-3770 processor and 8.00 GB of RAM.

The simulation results are illustrated in Figures 1-16. In Figure 1, the initial randomly gener-
ated population is shown to be well distributed throughout the region [0, 1]2. Each color represents
a different independent simulation (run), and the legend can be found in Figure 16. Figure 2
demonstrates that the populations overlap with each other, yet they remain relatively well dis-
tributed across the region, making it difficult to discern any bias in the SSA. However, Figure 3
reveals that the populations are moving towards both axes and the origin. The populations become
progressively closer to the axes and the origin in the consecutive iterations 3, 4, and 5, as depicted
in Figures 4, 5, and 6 respectively. This population dynamics exemplifies the inherent bias of the
SSA towards the axes and the origin.
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Fig. 1. Randomly generated initial population Fig. 2. Population after the 1st iteration

Fig. 3. Population after the 2nd iteration Fig. 4. Population after the 3rd iteration

Fig. 5. Population after the 4th iteration Fig. 6. Population after the 5th iteration

The population dynamics of the SSA for the 10th, 15th, 20th, 25th, 30th, 35th, 40th, 45th, and
50th iterations are also shown in Figures 7, 8, 9, 10, 11, 12, 13, 14, 15, and 16 respectively. From
these figures, it is evident that as the number of iterations increases, the populations tend to
cluster closer to the axes and the origin. Based on these results, it is clear that the SSA exhibits a
significant bias towards both the origin and the axes.

Furthermore, a numerical test was conducted to estimate the diversity of the population. In
order to assess spatial relationships and overall distribution, the average Euclidean distances (AED)
between pairs of individuals in the population were calculated. The average distance was determined
by summing all the calculated distances from each point to every other point in the population,
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Fig. 7. Population after the 10th iteration Fig. 8. Population after the 15th iteration

Fig. 9. Population after the 20th iteration Fig. 10. Population after the 25th iteration

Fig. 11. Population after the 30th iteration Fig. 12. Population after the 35th iteration
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Fig. 13. Population after the 40th iteration Fig. 14. Population after the 45th iteration

Fig. 15. Population after the 50th iteration
Fig. 16. Signatures of SSA for different independent
run

and then dividing the sum by the total number of pairs. This average distance serves as a measure
of the average separation between individuals, with a larger value indicating greater dispersion or
diversity.

During the experiment, each iteration of the independent simulations involved a population of
size 1000. Therefore, the total number of distinct pairs (taking into account that (x, y) and (y, x)
are equivalent) was (1000 × 999)/2. The distances between each pair were calculated using the
Euclidean distance formula shown in Equation 6. The distances were then summed up, and the
resulting sum was divided by (1000× 999)/2 to obtain the AED.

distance((x1, y1), (x2, y2)) =
√
(x2 − x1)2 + (y2 − y1)2 (6)

Table 1 displays the AED for specific iterations in each run. The results demonstrate that, for
each run, as the iteration increases, the AED decrease significantly. This indicates that population
diversity decreases and becomes synchronized with the iterations, particularly towards the axes
and origin, as revealed by the signature test.

5 Conclusion

In this study, we conducted an analysis of the theoretical behavior of population movement in
the Sine Cosine Algorithm (SCA) with regard to structural bias. Using the signature test as a
simple technique, we observed that the SCA demonstrates a significant bias towards the origin
and both axes, indicating that it is an origin-axes biased algorithm. To validate these observations,
Additionally, we calculated the average Euclidean distances of the population to assess spatial
relationships and overall distribution. This characteristic of the SCA makes it particularly well-
suited for optimization problems where the optimal solution is located near the origin or axes.
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Table 1. Average Euclidean distance for different simulation (independent run)

Iteration
Average Euclidean Distance

Simulation 1 Simulation 2 Simulation 3 Simulation 4 Simulation 5 Simulation 6 Simulation 7 Simulation 8 Simulation 9 Simulation 10

1 1.45e+0 1.62e+0 1.66e+0 1.20e+0 1.33e+0 1.65e+0 1.37e+0 1.17e+0 1.16e+0 1.54e+0

5 1.19e+0 1.09e+0 1.23e+0 1.12e+0 1.13e+0 1.04e+0 1.33e+0 1.12e+0 1.12e+0 1.03e+0

10 5.15e-1 3.90e-1 1.19e+0 8.91e-1 1.33e+0 2.36e-1 1.23e+0 8.79e-1 1.19e+0 3.74e-1

15 1.03e-1 6.31e-2 1.01e+0 7.93e-1 3.37e-1 5.97e-2 1.01e+0 6.38e-1 2.33e-1 7.31e-2

20 8.64e-3 8.64e-3 3.48e-1 6.89e-1 2.12e-1 7.87e-3 2.73e-1 6.19e-1 1.92e-1 6.54e-3

25 7.39e-4 9.63e-3 8.94e-2 6.06e-1 2.82e-1 8.76e-3 7.89e-2 6.01e-1 1.83e-1 8.73e-3

30 1.95e-4 1.48e-4 3.69e-2 5.37e-1 3.16e-1 1.79e-4 3.24e-2 5.15e-1 1.32e-2 1.38e-4

35 7.02e-5 3.00e-5 2.78e-2 4.51e-2 3.20e-3 4.53e-5 2.13e-2 4.45e-1 9.32e-3 3.10e-5

40 7.50e-5 2.35e-5 1.15e-2 3.90e-1 3.01e-3 3.45e-5 1.12e-2 2.34e-1 4.30e-3 2.23e-5

45 5.84e-5 2.03e-5 9.41e-3 3.52e-3 2.78e-4 2.14e-5 9.39e-3 2.14e-1 3.23e-3 1.53e-5

50 6.08e-5 1.80e-5 9.68e-3 3.34e-1 2.68e-4 2.18e-6 9.57e-3 1.11e-4 2.68e-3 1.40e-5

However, it is essential to note that for black box optimization problems, we cannot determine the
optimal solution in advance.

Further research is needed to in dept understand the population dynamics of SCA, opening
opportunities for future investigations. A significant direction for future work lies in developing
operators that can effectively prevent bias in algorithms. However, it should be noted that the
signature test utilized in this study is limited to two dimensions, thereby constraining its ability
to detect bias in higher dimensions. This underscores the importance of conducting additional
research to explore alternative techniques. We anticipate that this analysis will provide valuable
insights to the research community and make contributions to the advancement of metaheuristics.
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Abstract. This paper studies the days off scheduling problem when the demand for staffing
may differ from day to another and when the total load is fixed in advance for each employee.
The scheduling problem is then to assign on-days and days-off to employees with different
objectives: (1) exactly met the demand and the offer requirement (2) satisfy as best as
possible the requirements. For each one, we propose a polynomial time algorithm based on
network flow to construct a feasible scheduling.
Keyword: Workforce Scheduling, Maximum Flow, Polynomial Time Algorithm.

1 Introduction

The days-off scheduling problem basically involves determining the days-off and the on-days for
each staff member over the planning horizon under various constraints. It is a large area of research
with both theoretical and practical aspects, especially for organizations operating seven days a week
or 24 hours a day such as hospitals. Days off scheduling can serve as a framework for addressing
various real-life tasks [12, 13].

Different models and approaches are proposed in literature to schedule days-off. The earliest
approaches are concerned with minimizing the size of full-time staff to cover the staffing demand of
a company under several operating constraints [3], [4], [17]. Zolfaghari et al.[20] develop a genetic
algorithm for the retail staff scheduling problem. Shahnazari et al. [15, 16] proposed a fuzzy multi-
objective mathematical model for scheduling multi-skilled manpower with vagueness on target
values of employers’ objectives and employees’ preferences.

Recently, has been a particular focus on scheduling including consecutive days off have been
studied too. Several special cases or general problems can be handled through heuristics based
on network and integer programming. [7, 9] proposed a mixed integer programming formulation
for compressed work scheduling problem where each employee works 4 days and takes 3 days off
per week. Costa et al.[6], Jarray[11, 10] present decomposition approaches for workforce scheduling
while meeting the labor demands and a prespecified number of workdays per employee over the
planning horizon. Veldhoven et al. [19] propose a two-phase integer programming for the personnel
scheduling problem. Maenhout and Vanhoucke [14] propose a column generation approach to inte-
grate the scheduling of project and personnel staffing. The reader is referred to [2, 18] for surveys
days- and on-days scheduling.

Our main contribution to solve the days-off scheduling problem is the consideration of acyclic
demand. Moreover, we take into account the number of worked days of each employee over the
planning horizon as well as the daily staffing demand. The problem is to allocate days off to
employees in order to cover the staffing demand on each day and the total workload of each
employee under various evaluation criteria. As in many studies, we suppose that all the employees
have the same professional qualifications (see [1], [8]) such as call center scheduling.

Let a company with daily demand of staffing to be satisfied by m employees ei, i = 1, . . . ,m,
over a planning horizon of n days dj , j = 1, . . . , n. For a weekly planning, we have n = 7. Each
day can be either a working day (on-day) or a rest day (day-off).
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We denote hi the load (the number of working days) over the planning horizon for employee
ei, i = 1, . . . ,m, and vj the demand (number of employees required) of day dj , j = 1, . . . , n. We
suppose that the load of an employee is fixed in advance by an employment contract. We call an
additional day or extra day, a day worked beyond the normal load. The vectors H = (h1, . . . , hm)
and V = (v1, . . . , vn) are respectively called the labor demand and the load offer vectors.

The problems considered in this paper seek to assign on-days to employees while satisfying
staffing requirement, i.e. vj employees on work day dj and insuring that each employee ei works
hi days over the planning horizon.

The paper is organized as follows. In the next section, we examine the basic problem policy
where we exactly satisfy the requirements dj and hi. In section 3, we consider the flexible offer
problem where we exactly satisfy the daily demand and satisfy as best as possible the employees
requirement. In section 4, we consider the flexible demand problem were we exactly satisfy the
load offer and satisfy as best as possible the daily demand. In section 5, we consider the general
flexible problem where we satisfy as best as possible both requirements.

2 The basic problem: P1

We are going to develop an algorithm to solve the basic problem. For a solution to exist we must
have

∑m
i=1 hi =

∑n
j=1 vj .

We will model the basic problem by a max-flow problem in a bipartite graph G(R,C,E) where
R = {ri, i = 1, . . . ,m} represents the employees and C = {cj , j = 1, . . . , n} represents the days
of the planning horizon (see Figure 2). We add two nodes to G(R,C,E): a source s and a sink t.
The source s has an edge of capacity hi to every vertex ri with which is the load offer of employee
i. By symmetry, the destination t has an edge of capacity vj from every vertex cj which is the
demand of day j. There is a unit capacity edge (ri, cj) between every pair of nodes ri and cj which
corresponds to the schedule to reconstruct. So the basic problem is equivalent to the max-flow
problem in G. In particular, the basic problem has a solution if and only if the maximum flow from
the source to the sink is of value

∑m
i=1 hi =

∑n
j=1 vj . Since the capacities are integers, there exists

an optimal integer flow. A flow has a value 1 on an edge (ri, cj) means that employee ei works on
day dj .
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Fig. 1. Modelling the basic problem through a max flow problem. The load offer is H = (2, 2, 2, 3)
and the labour demand is V = (3, 2, 3, 1)

2.1 An example

Consider a company with four employees and a planning horizon of seven days (m = 4 and n = 3).
The number of worked days of each employee is given by H = (5, 5, 5, 5) and the daily request of
staffing is given by V = (4, 4, 3, 3, 3, 2, 1).

The max-flow associated problem is depicted in Figure 2. On each arc of this graph, we write
also the value of the maximal flow. So we deduce a solution to the scheduling problem (see Figure
3).
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Fig. 2. Modelling the basic problem through a max flow problem. The load offer is (2, 2, 3) and the labour
demand is (3, 1, 3)

Let S be a schedule. We denote by hs
i the effective number of days worked by employee i and

by vsj the effective number of employees working during day j. The vector Hs and V s are called
the vector of the effective demand and load. We note that ∥V s∥ = ∥Hs∥. The surplus of employees
on day j is max(0, vsj − vj). The uncovered demand on day j is max(0, vj − vsj ).

3 The flexible offer problem: P2

If the basic problem admits a solution, we are done, otherwise, we relax the load offer constraint.
We seek to exactly satisfy the daily demand while minimizing the cost of the addition on-days or
extra days. In this problem overtime may occurs to satisfy the demand.

We suppose that the overtime cost is an increasing function. Here we limit ourselves to maximum
two extra days per employee. For each employee ei, we denote c1i and c2i the cost of respectively
the first and the second extra day with c2i > c1i . We will propose a min-cost max-flow model in
a bipartite network G2 (see Figure 3) to solve this problem. We build a new graph G2 in the
following way. We take a copy of G and we set to zero the cost of each edge.

We replace every edge (s, ri) G by three parallel edges (see Figure 3). The first edge has a
capacity of hi and a zero cost. The second edge has a unit capacity and a cost equal to c1i witch
denotes the cost of the first extra working day. The third edge has a uni capacity and a cost equal
to c2i witch denotes the cost of the second extra working day.

Within the framework of our model it is easy to very that in the min cost max flow optimal
solution, the flow value on the second arc (s, ri) is non null only if the first arc (s, ri) is saturated
and that the flow value on the third arc (s, ri) is non null only if the second arc (s, ri) is saturated.

We note that our model can be generalized to consider an arbitrary maximum number of extra
days for each employee.

Definition 1 Given an n-dimensional vector X. The 1-norm of X (or the norm for short), ∥X∥,
is defined by ∥X∥ =

∑n
i=1 |Xi|.

Definition 2 Given an n-dimensional vector X. The sum of the positive values is noted by |X|+ =∑n
i=1 max(0, Xi).

Proposition 1 Given H and Hs two m-dimensional vectors and V and V s two n-dimensional
vectors. We have: ∥Hs−H∥ = 2|Hs−H|++∥Hs∥−∥H∥ and ∥V s−V ∥ = 2|V s−V |++∥V s∥−∥V ∥.
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Proof 1 ∥Hs −H∥ = |Hs −H|+ + |H −Hs|+ (1).
For each employee i, we have hs

i = hi +max(hs
i − hi, 0)−max(hi − hs

i , 0).
So we get ∥Hs∥ = ∥H∥+ |Hs −H|+ − |H −Hs|+ (2).
By combining (1) and (2), we get ∥Hs −H∥ = 2|Hs −H|+ + ∥Hs∥ − ∥H∥.
Similarly, we prove that ∥V s − V ∥ = 2|V s − V |+ + ∥V s∥ − ∥V ∥
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Fig. 3. Modelling the general flexible offer problem through a max flow problem

4 The flexible demand problem: P3

A second alternative to reconstruct a schedule when the basic problem does not have a solution
is to relax the demand constraint. We seek to exactly satisfy the load offer while minimizing the
uncovered demand (|V − V s|+) over the planning horizon. We have ∥V s∥ = ∥H∥ since we exactly
satisfy the load offer of each employee.

From proposition 1, |V − V s|+ = ∥V ∥ − ∥H∥+ |V s − V |+ because ∥H∥ = ∥V ∥+ |V s − V |+ −
|V −V s|+. Since ∥V ∥ and ∥H∥ are constant, we deduce, that minimizing the sum of the uncovered
demand is equivalent to minimizing the total surplus of employees. Thus P3 can also be modeled
by a min-cost max-flow problem in a bipartite network G3 (see Figure 4).

We build a new graph G3 in the following way. We take a copy of G and we set to zero the
cost of each edge. We replace every edge (cj , t) by two parallel edges (see Figure 4). The first arc
has a capacity of vj and a zero cost. The second arc has an infinite capacity and a unit cost witch
denotes the surplus of employees on day dj . We note that in the maximal flow, all the arc outgoing
from the source are saturated because of the unbounded arc incoming to the sink. Thus we verify
that ∥V s∥ = ∥H∥.
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Fig. 4. Modelling the flexible demand problem through a max flow problem

5 The general flexible requirement problem: P4

Here we consider a more generalization of the basic problem under flexible daily demand and load
offer. We seek to satisfy as best as possible the requirements instead of exactly satisfying them.
The objective of this problem is to minimize the slack between the vectors H and Hs; and the
vectors V and V s.

We will construct a schedule S with L (∥Hs∥ = ∥V s∥ = L) working days while minimizing
∥H−Hs∥+∥V −V s∥. We note that if

∑m
i=1 hi =

∑n
j=1 vj , then we choose L =

∑n
j=1 vj , otherwise

we may set L =
∑m

i=1 hi+
∑n

j=1 vj

2 , i.e the mean of the total demand and the total load.
By proposition1, we state that the flexible problem is equivalent to finding a schedule with L

working days minimizing the sum of the positive gaps on the demand and the requirement.
Again this problem can be modeled by a min-cost max-flow problem in a bipartite network G4

(see Figure 5). The graph G4 is built from G in the as follows. We take a copy of G and we set to
zero the cost of each edge. Each edge (s, ri) is replaced by two parallel edge (see Figure 5). The first
edge has a capacity of hi and a zero cost. The second edge has an infinite capacity and unit cost
such that an extra working days denotes a non zero flow on this edge. Similarly each edge (cj , t)
is replaced by two parallel edge (see Figure 5). The first edge has a capacity of vj and a zero cost.
The second edge has an infinite capacity and a unit cost with denotes an extra working employee
on this day. To ensure L working days, we impose a constraint of L units of flow on vertices s and
t.

6 Conclusion

In this paper, we have studied a general days off scheduling problem where the number of worked
days for each employee and the staffing demand are taken into account. We have proposed poly-
nomial time algorithms based on network flow to solve the problems under three alternatives of
flexible requirements. It would be also interesting to study our basic problem under other days-off
allocation strategies.
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1 Introduction

A globally effective approach to high-fidelity optimization problems based on computationally ex-
pensive analysis lies in the exploitation of surrogate models, also known as metamodels or response
surface models. They act as cheap-to-evaluate alternatives to the original high-fidelity models re-
ducing the computational cost, while still providing improved designs. The underlying principle of
Surrogate-Based Optimization (SBO) consists in accelerating the optimization process by essen-
tially exploiting surrogates for the objective and constraint evaluations, with a minimal number
of function calls to the high-fidelity models for keeping the computational time within affordable
limits [Forrester and Keane, 2009]. In more detail, the SBO design cycle consists in several major
elements. First of all, a Design of Experiments (DoE) is defined using an a priori space filling tech-
nique Latinized CVT (LCVT), see [Gunzburger et al., 2007]. After the evaluation of the DoE by the
high-fidelity models, the surrogate models are trained based on the available information in the
database, and an evolutionary optimization step is launched to generate new best candidates for
the given optimization problem. These candidates are then evaluated by the high-fidelity models
and their accurate performance is checked afterwards. Finally, the new candidates are added to
the database and the online SBO is repeated until a satisfactory performance is achieved.

In the literature, the vast majority of described SBO is limited to a purely continuous design
space, i.e., an optimization context where each design variable is a continuous variable. However
for real engineering problems, design variables can have different natures:

• continuous variables, defined over an interval in IR;
• integer variables, defined over an interval in ZZ;
• discrete variables, only defined for a finite set of elements in IR or ZZ (non-exclusive);
• categorical variables, defined for a set of strings where the elements are unordered (nominal).

One of the main challenges is the handling of the non-continuous variables within the whole opti-
mization process. We present here a SBO framework handling mixed variables with a focus on the
management of the categorical ones. More precisely, we propose an adaptation of the strategy that
[Wang et al., 2021] have developed to handle categorical variables within a Particle Swarm Opti-
mization (PSO) algorithm, to an Evolutionary Algorithm (EA) as inner optimizer of the SBO loop.
Our strategy is implemented in the integrated optimization platform Minamo, Cenaero’s in-house
design space exploration and multi-disciplinary optimization platform, see [Sainvitu et al., 2010]
for more information. The next section presents our proposed strategy to adapt the genetic opera-
tors (mainly mutation and crossover operators) inside the EA in order to better deal with categorical
variables.

2 Proposed strategy for the EA of Minamo

By default, the EA of Minamo manages categorical variables within the mutation and crossover
operators by using a random selection. For the mutation, the new value is chosen randomly among
all the possible ones for the concerned variable while for the crossover, the new value is taken
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randomly from the ones of the parents. In our adaptation of [Wang et al., 2021], a probability is
associated to each possible value of each categorical variable. The initialization of these probabilities
is done by defining an equivalent amount for each possible value of each categorical variable. If
we consider a categorical variable xj with nj possible values, the associated probabilities will be
initialized to Pj,k(0) = 1/nj , 1 ≤ k ≤ nj , where Pj,k represents the probability associated to the
k-th possible value of the j-th categorical variable. During the EA, the probabilities are updated
using the following rule:

Pj,k(t+ 1) = αPj,k(t) + (1− α)Cj,k(t)

n(t)
, (1)

where t is the current iteration of the algorithm. The quantity Cj,k(t) is the number of individuals
in the population whose j-th categorical variable at iteration t has the k-th value, while n(t) is the
current population size. Rule (1) is directly inspired from [Wang et al., 2021], where the real value
α ∈ [0, 1] is used as a trade-off parameter between the historical value of the probability and the
actual state of the search.

In our work, we consider a different tuning of the parameter α from the ones proposed by
[Wang et al., 2021], which use either a Cauchy or a Gaussian distribution. We use a decreasing sig-
moid function where the value of α starts close to one and ends close to zero. Doing so, the impact
of the historical value of the probability is stronger at the beginning of the EA and at the end, the
current state of the search has more impact for the new values of the probabilities. During the EA,
these probabilities are used to handle categorical variables for the genetic operators. The mutation
of such variables is done by making a selection of their possible values according to their probabil-
ities. More precisely, a value will have a better chance of being chosen if its associated probability
is high. The crossover operator is not referenced in [Wang et al., 2021] because it is not used in
PSO algorithms. We propose to use the probabilities to build a crossover operator able to handle
categorical variables. More precisely, let us consider two parents with their value and associated
probability, (v1, prob1) for parent 1 and (v2, prob2) for parent 2. We define ν = min{prob1,prob2}

max{prob1,prob2} ,
and take a random value u, uniformly distributed in [0, 1]. If this value is greater than ν, then the
offspring value is set to the one corresponding to the greatest probability. Otherwise, the offspring
value is set to the one corresponding to the smallest probability. With this crossover strategy, the
smaller the minimum probability compared to the maximum probability, the more the value as-
sociated with the better probability will be promoted. If the probabilities are equal, the offspring
value is set to the one corresponding to the parent with the best objective function value.

3 Numerical results for the SBO process of Minamo

We present the results obtained with the modified EA in the SBO process of Minamo where
the sigmoid tuning for the parameter α and the adapted mutation and crossover strategies we
mentioned in the previous section have been used. This version is called SBO-probaCat versus
the default version of Minamo, called SBO-default. Results obtained for a pure EA optimization
process without surrogate model has been presented in [Beauthier et al., 2023].

To compare both versions, a set of 7 test problems has been used. All of them involve, at
least, continuous and categorical variables and some of them also consider discrete and/or in-
teger variables. Furthermore, this set contains constrained and unconstrained problems. These
test problems are car side impact design, reinforced concrete beam design and welded
beam design coming from [Gandomi et al., 2011]. We also consider pressure vessel design,
speed reducer design and tension/compression spring design from [Cagnina et al., 2008]
and piston from [Zhang et al., 2018]. In order to achieve a fair comparison, the two versions are
executed in the same conditions : 100 independent runs, started from an initial database (LCVT) of
size n+1, n being the number of design variables and using the auto-adapted radial basis function
networks (TunedRBFN) implemented in Minamo as surrogate model (see [Sainvitu et al., 2010]).

For the sake of analyzing the global performance of the tested versions, we use the performance
profiles introduced by [Dolan and Moré, 2002]. The goal of this tool is to display the amount of
solved problems by each version according to a value τ . This value represents the proportion of
the budget used by a version to solve a problem, compared to the minimal budget required by all
versions to solve the same problem. In this work, the budget is defined as the number of function
evaluations and each run of each test problem is considered as a problem to solve.
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Fig. 1. Performance profile for an alternative version of the SBO used in Minamo on a benchmark of 7
test problems. A zoom has been applied to the y-axis on the portion where the performance profile values
start and end.

The performance profiles for the SBO-default and SBO-probaCat versions are shown in Fig-
ure 1. The abscissa axis of this graphic represents the proportion of the minimal budget used and
the ordinate axis shows the percentage of successfully solved problems. We can observe that the
modified version for mixed variables outperforms the default one. Indeed, for any proportion of
the minimal budget, the SBO-default version is never able to solve more test problems than the
SBO-probaCat version. However, the scale used for the y-axis increases the differences between the
two curves. It would be interesting to use statistical tests to confirm that the observed differences
are sufficiently relevant. Encouraged by the promising results for this first implementation of our
adaptation, we would like to pursue our investigation of using probabilities features in the EA and
also enrich the set of problems used for the benchmark. Moreover, we would like to add the pro-
posed PSO algorithm by [Wang et al., 2021] in the benchmark in order to compare its results with
those of the default and modified EA.
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{marcelo.becerra.r}@mail.pucv.cl

{broderick.crawford,ricardo.soto}@pucv.cl
2 University of Lille & INRIA, Lille, France

el-ghazali.talbi@univ-lille.fr
3 Universidad Andres Bello, Santiago, Chile

giovanni.giachetti@unab.cl

Abstract

This article proposes the utilization of a classical metaheuristic in our framework
for selecting binarization schemes based on reinforcement learning. Our selector
enables the binarization of continuous metaheuristic, allowing for its applica-
tion in binary domains. In our previous works, reviewers commonly questioned
why we didn’t use more popular metaheuristics like PSO. Finally, we present
the implementation and the results obtained, which demonstrate the successful
performance of PSO, whether using QL or BQSA, in solving a coverage problem.

Keywords: PSO · Q-Learning · Backward Q-Learning · Coverage
Problem

1 Introduction

In the literature, it has been conclusively demonstrated in recent years that
metaheuristic optimization algorithms (MH) are highly effective in addressing a
variety of optimization tasks. These applications span from robotics [20], power
systems [12], to neural network training [3]. Some classical examples of such
MH include Particle Swarm Optimization [22], Cuckoo Search [45], and Genetic
Algorithm [16]. In the literature, population-based MH are more widely used
than single-solution MH.

Metaheuristics (MH) are widely used algorithms for solving optimization
problems. While most MH algorithms have been developed for continuous do-
mains, there are techniques that can operate in both binary and continuous
domains, such as genetic algorithms [31] and certain variations of Ant Colony
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Optimization (ACO) [28]. However, these techniques have not been able to match
the performance of continuous MH algorithms that utilize an operator capable
of transforming continuous solutions into the binary space. Recent literature
has shown a growing interest in the development of new binarization opera-
tors, drawing inspiration from genetic algorithms, including crossover techniques
[1]. Furthermore, alternative approaches have been explored, such as machine
learning-based techniques. These include unsupervised clustering methods, for
instance, K-means [38] and DB-scan [13], reinforcement learning (RL) techniques
like Q-Learning [10] and SARSA [26], as well as their combinations like Back-
ward Q-Learning [6]. Additionally, inspirations from quantum computing [24]
and logical operators [42] have been investigated. Moreover, classical approaches
like the two-step method have been employed, involving the normalization of
continuous values using a transfer function (step 1) and subsequent binarization
using an approximation rule, resulting in binary values of 0 or 1 (step 2) [9]. It is
crucial to continue exploring novel variations of binarization techniques, as their
influence on the performance of MH algorithms has been well-documented [2].

This work proposes to binarize PSO using the developed framework called
Binarization Scheme Selector (BSS) to solve 45 instances of the Set Covering
Problem (SCP). BSS has the capability to adapt any continuous MH to the
binary domain and is based on the classical two-step technique. In the first
step, our intelligent operator carefully selects a suitable transfer function. This
function is essential for normalizing the continuous values within the range of
[0, 1] and preparing them for the subsequent stage. The proper choice of the
transfer function is crucial to ensure accurate and efficient adaptation. In the
second step, our intelligent operator chooses the optimal binarization criterion.
This criterion determines how the normalized values will be transformed into
the binary domain {0, 1}. Utilizing an intelligent and adaptive approach, our
operator selects the best binarization criterion for each specific problem.

The paper is structured as follows: Section 2 presents the related work on
metaheuristic techniques, binarization, hybridizations, and machine learning. In
Section 3, we introduce the binarization using BSS. Finally, in Sections 4 and 5,
we present the obtained results for problem solving and the respective conclu-
sions.

2 Related Work

2.1 Metaheuristics

MH are widely used to solve optimization problems, employing strategies that go
beyond local search. These techniques rely on two key components: exploration
and exploitation. Exploration involves generating diverse solutions to explore the
search space at a global level, while exploitation focuses on finding optimal solu-
tions within a local region. Striking the right balance between these components
is crucial to achieve global optimization. Selecting the best solutions ensures
convergence towards the optimum, while diversification through randomization
allows for the exploration of the entire search space, increasing solution diversity.
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MH offer a significant advantage by generating near-optimal solutions in
reduced computational time, unlike exact methods, and they have the capabil-
ity to adapt to different problems compared to heuristic methods. These MH
are generally designed for continuous domains, reflecting their development and
classification. Various approaches exist for classifying MH, with popular options
proposed by Heidari et al. [15], and Cuevas et al. [11], which categorize them
into trajectory-based and population-based. Another relevant taxonomy pre-
sented in [19] delves into key components of these algorithms, including solution
evaluation, parameters, encoding, initialization of agents or population, popu-
lation management, operators, and local search. In this work, our focus is on
swarm-based MH, specifically Particle Swarm Optimization (PSO). PSO, origi-
nally proposed by Kennedy and Eberhart in 1995 [22], simulates the movement
of particles in a search space to find optimal solutions.

2.2 Particle Swarm Optimization

The original PSO is based on a swarm S consisting of n particles (S = 1, 2, ..., n).
Each particle i in the swarm has its position vector xi = (xi,1, xi,2, ..., xi,j , ..., xi,m)
and its velocity vector vi = (vi,1, vi,2, ..., vi,j , ..., vi,m) in an m-dimensional contin-
uous solution space. Initially, the particle positions and velocities are randomly
assigned within predefined limits. At each iteration, the particles update both
their position and velocity. The position of a particular particle depends solely
on its velocity, meaning that in the t− th iteration, the position of particle i is
determined by:

xt+1
i,d = xt

i,d + vt+1
i,d (1)

vt+1
i,d = wt · vti,d + C1 · rand1 · (pbestti,d − xt

i,d) + C2 · rand2 · (gbesttd − xt
i,d) (2)

Where vti,d and vt+1
i,d represent the current velocity and the next velocity

of the i-th particle in the d-th dimension. xt
i,d and xt+1

i,d denote the current
position and the future position in the continuous search space. w is the inertia
weight that balances exploration and exploitation, C1 and C2 are acceleration
coefficients, rand1 and rand2 are two random numbers in the range of [0, 1].
Finally, pbestti,d and gbesttd refer to the best position found by the i-th particle
in the d-th dimension and the best position found by the swarm up to the current
moment in the d-th dimension.

2.3 Binarization

Population-based MH algorithms have often been developed and utilized for op-
timization problems in continuous domains. However, when dealing with binary
optimization problems, a specific adaptation to the context of 0 and 1 values
becomes necessary. Consequently, over the decades, several authors have pro-
posed various approaches to adapt MH algorithms for effective application in
the binary domain [5].



4 Marcelo Becerra-Rozas et al.

2.4 Discrete and Binary Particle Swarm Optimization

The authors of the original PSO in 1997 [23] published a binary adaptation
using the sigmoid function, which allows PSO to generate values in the range
[0,1] (Eq. (1)). In order to have the next particle position in the binary search
space (xbt+1

i,d ), the rule (4) is applied.

Sigmoid TF (vt+1
i,d ) =

1

1 + e−vt+1
i,d

(3)

xbt+1
i,d =

{
1 if rand < Sigmoid TF (vt+1

i,d )

0 if rand ≥ Sigmoid TF (vt+1
i,d )

(4)

Where rand is a uniform number between U ∼ (0, 1). The sigmoid function
applied in the binary version of PSO is classified as a type-S transfer function,
while the rule used is referred to as a standard binarization technique. Trans-
fer functions play a crucial role in mapping the continuous search space to a
binary one. Similarly to Kennedy and Eberhart, many other authors have pro-
posed their own methods of discretization and binarization. In [7], the authors
introduce some V-type transfer functions. Wang et al. [39], on the other hand,
propose a probability-based BPSO using a linear transfer function. Engelbrecht
and Pampara [34] proposed a binary differential evolution. Islam et al. [18] intro-
duced time-varying S-shaped and V-shaped transfer functions, while Mirjalili et
al. proposed several new functions, including S-type [30], V-type [30], and U-type
[32]. Guo et al. [14] presented Z-type transfer functions, and other applications
can be found in [35].

2.5 Hybrid-Metaheuristics

In the literature, a hybrid MH has been described as the fusion of a metaheuristic
algorithm and a different learning algorithm [37, 21], such as combining MH with
machine learning or RL techniques [36]. Within the realm of RL techniques, there
are two groups: RL supporting MH and MH supporting RL. In the first group,
Garcia et al. [13] discuss two lines of research. The first line involves integrating
RL techniques as replacements for operators, such as population management,
local searches, or parameter tuning. The second line uses RL as a selector for
a set of MH, enabling the choice of the most suitable one depending on the
problem at hand.

When RL is used as a selector, we can further divide this category into three
groups. The first group is algorithm selection, where a choice is made among a
set of techniques to address the problem in order to improve performance on a
set of similar instances [27]. Secondly, there are hyperheuristic strategies, which
utilize MH to cover a set of problems. Lastly, cooperative strategies combine
algorithms sequentially with the aim of enhancing solution robustness.
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2.6 Reinforcement-Learning Techniques

The main objective of these techniques is to enable the agent to learn a policy
that maximizes long-term rewards by interacting with the environment and rely-
ing on its experience. The value function provides information about the utility
of actions taken from a state, i.e., how favorable the reward is. The expected re-
ward function, denoted as Rt, is composed of both the current obtained rewards
and discounted future rewards. The future reward for time instant t is calculated
using Equation (5).

Rt =

n∑
j=0

γj · rt+j+1 (5)

Where the total return is calculated by summing the future rewards weighted
by a discount factor (γ) over a time range determined by the index (j) ranging
from 0 to n. Each reward (rt+j+1) represents the reward received at a step
forward in time from time t.

2.7 Q-Learning

Q-learning, widely recognized in the field of RL [41], is an algorithm that oper-
ates independently of the environment in which it is executed. The agent selects
the action a believed to generate the highest value. When the agent performs an
action in the environment, a perturbation occurs. The impact of this perturba-
tion is evaluated based on the obtained reward or punishment (r), determining
the next state st+1 of the environment. Eq. (6) provides a mathematical repre-
sentation of how the value is updated in Q-learning.

Qnew(st, at) = (1− α) ·Qold(st, at) + α · [rn + γ ·maxQ(st+1, at+1)] (6)

In the presented equation, Qnew(st, at) represents the reward of the action
taken in state st, rn is the reward received when performing action at, and
maxQ(st+1, at+1) is the maximum action value for the next state. The values of
α and γ are important factors in this equation. α is the learning factor and must
satisfy 0 < α ≤ 1. On the other hand, γ is the discount factor and must satisfy
0 ≤ γ ≤ 1. As γ approaches 0, more importance is given to immediate reward,
while as it approaches 1, greater emphasis is placed on future reward relative to
immediate reward.

2.8 Backward Q-Learning

Backward Q-Learning is another RL technique, proposed by Wang et al. [40],
that introduces a backward update in the learning process. Unlike conventional
Q-Learning, Backward Q-Learning takes into account past rewards when updat-
ing the Q-values, allowing for more comprehensive feedback and improving the
estimation of action-state values.
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The retrospective update involves updating not only for the actions taken in
the current state but also for the previous actions that led to the current state.
This backward update allows the agent to consider the past consequences of its
actions and adjust the Q-values accordingly. In this process, we define a goal
state s0 and a terminal state sn. When the agent reaches the goal state, the
technique requires the agent to update the Q-function N times from the initial
state to the terminal state.

Qnew(s
i
t, a

i
t)←− (1− α) ·Q(sit, a

i
t) + α · [rit+1 + γ ·maxaQ(sit+1, a

i
t+1)] (7)

where i = 1, 2, . . . , N is the number of times the Q-function will be updated
in the current episode. In turn, the agent simultaneously records the four events
in M i, represented mathematically with the Equation (8):

M i ←− sit, a
i
t, r

i
t, s

i
t+1 (8)

Once the agent reaches the terminal state, the agent will backward update
the Q-function based on the information obtained from Equation (8) as follows
(Equation (9)).

Qnew(s
j
t , a

j
t )←− (1− α) ·Q(sjt , a

j
t ) + αb · [rjt+1 + γb ·maxQ(sjt+1, a

j
t+1)] (9)

where j = N,N − 1, N − 2, . . . , 1, αb and γb are the learning and discount
factors respectively for the backward update of Q-function.

2.9 Reward Function

A good balance of reward and punishment results in an equal variety in action
selection, which makes the optimal action identified more trustworthy. For this
reason, we will use a simplified version of Xu and Pi’s work [44]. The actions
of our smart selector will be rewarded based on this version, which considers
as reward value +1 when fitness is improved or 0 otherwise. In equation (10)
contained in Table (1) we can see the above.

Table 1: Rewards used in BSS
Reference Reward Function

[44] rn =

{
+1, if the current action improves fitness
0, otherwise.

(10)

3 RL-PSO: An Smart Selection Strategy

PSO is a swarm MH of great interest to researchers for solving complex opti-
mization problems [29]. As mentioned in previous sections, MH is developed to
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work in continuous domains, and certain modifications and adaptations are re-
quired to work in binary domains. In this instance, unlike the adapted versions
in Section 2.4, we propose utilizing a framework that aims to autonomously and
intelligently select transfer functions and binarization rules based on a chosen
MH to solve binary problems.

3.1 A Reinforcement Learning-Based Binarization Scheme Selector

As mentioned in Section 1, we propose to binarize PSO using the developed
framework called Binarization Scheme Selector (BSS) based on the aforemen-
tioned two-step technique. This combination of RL with MH follows the frame-
work proposed by Talbi et al. in [37]. The notable aspect of this intelligent se-
lector is its ability to autonomously learn through the reward function provided
at the end of an episode during the evaluation of a transfer function and bina-
rization rule in the optimization process. Figure 1 provides a general overview
of how BSS is applied.

Fig. 1: Binarization Scheme Selector.

To explain the flow of our BSS (Binarization Scheme Selector), we need to
choose the problem, the metaheuristic (MH), and the intelligent selector to use.
In this particular case, we have chosen the Set Covering Problem (SCP) as the
problem and Particle Swarm Optimization (PSO) as the MH. For the selector,
we will use two different configurations: Q-Learning and Backward Q-Learning.
This means that we will produce two distinct binary versions of PSO to solve
the SCP.

Now, following the flow, we begin by initializing the continuous population
and our Q-table. During the optimization process, in each iteration, we select
a transfer function and a binarization rule. In the context of the intelligent
selector, these selections correspond to a single action. PSO will be binarized
using a single action from the intelligent selector. As the iterations progress and
adapt to the problem, the action chosen by the selector will be modified.
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In summary, the flow of BSS involves initializing the continuous population
and the Q-table, selecting actions (transfer function and binarization rule) from
the intelligent selector in each iteration, and using these actions to binarize
PSO, which evolves over the iterations to better adapt to the problem. The
aforementioned process is illustrated in Algorithm 1.

Algorithm 1 PSO WITH THE BSS

1: Initialize a random swarm
2: Initialize Q-table, M and N (If applicable)
3: for iteration (t) do
4: Select action at for st from the Q-table
5: for solution (i) do
6: for dimension (d) do
7: Randomly generate the value of r1 and r2
8: Update the particle position with Eq. 1 and 2
9: Update the pbest
10: end for
11: end for
12: Binarization xt

i,d with action at

13: Get immediate reward rt
14: Get the maximum Q-value for the next state st+1

15: Update Q-table using Equation (6) or Equation (7)
16: Update the current state st ←− st+1

17: if Using Backward Q-Learning then
18: Record the four events in M
19: if t = N then
20: Backward update Q-Table usin Eq. 9
21: end if
22: end if
23: Update gbest
24: end for
25: Return the updated swarm

4 Experimental Results

In order to validate the performance of our proposal, a comparison was made
among 6 classical algorithms found in the literature [43] that solve the Set Cov-
ering Problem using different approaches. The algorithms BCL-PSO and MIR-
PSO are algorithms that we define as static. For BCL, it uses the V4-Elitist
functions [25], and for MIR, it uses the V4-Complement functions [30]. The ref-
erence instances of the Set Covering Problem solved are those proposed in the
OR library by Beasley [4]. In particular, we solved 45 instances provided in this
library, and the configuration of the instances is detailed in Table 2.

The algorithms were developed using Python 3.7 as the programming lan-
guage and were executed on Google Colaboratory, a free service platform. The
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Table 2: Configuration details from SCP instances employed in this work
Instance set m n Cost range Density (%)

4 200 1000 [1,100] 2
5 200 2000 [1,100] 2
6 200 1000 [1,100] 5
A 300 3000 [1,100] 2
B 300 3000 [1,100] 5
C 400 4000 [1,100] 2
D 400 4000 [1,100] 5

obtained results were stored and processed using databases provided by Google
Cloud Platform. To assess the performance of the algorithms, the recommenda-
tions from the authors in the previous study [25] were followed, which suggested
making 40,000 calls to the objective function. To achieve this, a population of 40
individuals was used, and 1000 iterations were performed in all PSO algorithm
runs. Furthermore, 31 independent runs were conducted for each evaluated in-
stance, ensuring a thorough and robust evaluation of the obtained results. This
information is represented in Table 3.

Table 3: Parameters’ setting.

Parameter Value

Independent runs 31

Number of populations 40

Number of iterations 1000

parameter C1 of PSO 2

parameter C2 of PSO 2

parameter α of backward Q-learning, Q-learning 0.1

parameter γ of backward Q-learning, Q-learning 0.4

parameter N of backward Q-learning 10

Table 4 provides detailed computational results on 45 different instances for
the 8 types of algorithms. To explain the different columns and rows of the
table: the first column, titled ”Inst.,” represents the problem instance being
solved, the second column, titled ”Opt.,” displays the known optimal value for
each instance. The subsequent columns are organized into pairs, representing
the different algorithms used to solve the SCP. Each pair of columns contains
the algorithm’s name and then shows the results for that algorithm in terms of
the best solution found (”Best”) and the average of all solutions found (”Avg”).
Some cells are highlighted in bold, indicating that the corresponding algorithm
found the best solution for that instance.
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Table 4: Detailed computational results on 45 instances.
BCL-PSO MIR-PSO GA ACL BCSO HEMA QL-PSO BQSA-PSO

Inst. Opt. Best Avg Best Avg Best Avg Best Avg Best Avg Best Avg Best Avg Best Avg

41 429 430.0 433.73 513.0 535.27 429 429.7 429 429.0 432 443.0 429 429.0 430.0 433.52 430.0 434.65

42 512 513.0 530.36 780.0 848.91 512 512.0 512 512.0 513 538.5 512 512.0 519.0 530.84 515.0 530.48

43 516 516.0 520.64 859.0 904.36 516 516.0 516 516.0 520 554.5 516 516.0 521.0 528.9 520.0 528.74

44 494 495.0 506.0 713.0 745.18 494 494.8 494 494.0 495 512.5 494 494.0 495.0 508.16 497.0 509.1

45 512 514.0 519.91 821.0 875.73 512 512 512 512.0 512 526.5 512 512.0 515.0 525.71 518.0 525.94

46 560 563.0 570.55 985.0 1036.91 560 560 560 560.0 560 567.5 560 560.0 562.0 567.16 564.0 569.94

47 430 432.0 434.82 596.0 650.55 430 430.2 430 430.0 430 437.0 430 430.0 432.0 437.23 432.0 437.97

48 492 493.0 497.18 835.0 877.82 492 492.1 492 492.0 492 522.0 492 492.0 493.0 499.1 493.0 499.39

49 641 652.0 668.45 1129.0 1183.18 641 643.1 641 641.0 654 675.5 641 641.0 652.0 673.35 653.0 674.29

410 514 514.0 521.73 774.0 825.0 514 514.0 514 514.0 517 526.5 514 514.0 516.0 522.06 516.0 523.0

51 253 254.0 258.36 395.0 432.82 253 253.0 253 253.0 256 262.0 253 253.0 256.0 262.06 255.0 261.65

52 302 309.0 316.27 590.0 640.18 302 303.5 302 302.0 303 315.5 302 302.0 311.0 321.55 315.0 323.87

53 226 228.0 229.27 369.0 397.91 228 228.0 226 226.0 226 232.0 226 226.0 229.0 230.26 228.0 230.55

54 242 243.0 246.36 382.0 412.82 242 242.1 242 242.0 242 246 242 242.0 244.0 248.84 246.0 248.58

55 211 211.0 214.36 284.0 307.45 211 211.0 211 211.0 216 221.0 211 211.0 211.0 215.1 211.0 214.45

56 213 216.0 219.09 323.0 374.45 213 213.0 213 213.0 213 226.0 213 213.0 213.0 219.19 213.0 219.35

57 293 294.0 300.64 467.0 514.18 293 293.0 293 293.0 293 443.0 293 293.0 298.0 302.94 295.0 302.9

58 288 289.0 293.55 502.0 532.27 288 288.8 288 288.0 288 305.0 288 288.0 289.0 292.97 288.0 293.23

59 279 280.0 284.36 487.0 535.64 279 279.0 279 279.0 280 281.0 279 279.0 280.0 283.55 280.0 283.84

510 265 266.0 270.09 441.0 475.82 265 265.0 265 265.0 268 276.5 265 265.0 265.0 271.48 265.0 271.16

61 138 141.0 143.91 428.0 487.91 138 138.0 138 138.0 143 148.0 138 138.0 140.0 142.45 140.0 143.65

62 146 147.0 149.55 649.0 720.27 146 146.2 146 146.0 146 155.0 146 146.0 146.0 150.42 146.0 150.16

63 145 145.0 148.36 588.0 684.27 145 145.0 145 145.0 147 152.0 145 145.0 146.0 148.42 145.0 148.29

64 131 131.0 133.27 389.0 434.27 131 131.0 131 131.0 132 135.0 131 131.0 131.0 132.94 131.0 133.19

65 161 161.0 168.64 667.0 733.27 161 161.3 161 161.0 164 170.5 161 161.0 161.0 169.58 161.0 167.58

a1 253 256.0 259.09 863.0 971.64 253 253.2 253 253.0 269 276.5 253 253.0 257.0 261.52 258.0 262.45

a2 252 259.0 262.36 779.0 887.09 252 252.0 252 252.0 259 265.5 252 252.0 257.0 263.13 256.0 263.94

a3 232 237.0 240.45 793.0 844.64 232 232.5 232 232.8 233 243.5 232 232.0 239.0 242.23 238.0 242.35

a4 234 236.0 240.64 777.0 824.27 234 234.0 234 234.0 237 244.0 234 234.0 236.0 241.35 237.0 243.06

a5 236 236.0 238.73 800.0 841.09 236 236.0 236 236.0 236 239.0 236 236.0 238.0 241.94 239.0 242.55

b1 69 69.0 70.18 881.0 1026.82 69 69.0 69 69.0 70 74.0 69 69.0 69.0 70.0 69.0 70.32

b2 76 76.0 78.09 912.0 1035.09 76 76.0 76 76.0 79 84.0 76 76.0 76.0 77.03 76.0 76.87

b3 80 80.0 81.18 1282.0 1343.36 80 80.0 80 80.0 80 83.0 80 80.0 80.0 81.29 80.0 81.42

b4 79 79.0 81.82 1073.0 1184.82 79 79.0 79 79.0 81 84.0 79 79.0 79.0 81.58 79.0 81.52

b5 72 72.0 72.91 990.0 1076.73 72 72.0 72 72.0 73 73.0 72 72.0 72.0 72.87 72.0 72.94

c1 227 232.0 233.82 1160.0 1193.91 227 227.2 227 227.0 231 235.0 227 227.0 230.0 236.16 231.0 236.48

c2 219 223.0 226.0 1281.0 1350.0 219 220 219 219.0 221 231.0 219 219.0 222.0 228.97 225.0 229.71

c3 243 244.0 250.36 1514.0 1592.73 243 246.4 243 243.0 251 264.0 243 243.0 246.0 251.87 247.0 251.55

c4 219 225.0 230.09 1308.0 1340.36 219 219.1 219 219.0 225 240.0 219 219.0 222.0 228.55 221.0 228.26

c5 215 215.0 218.73 1212.0 1267.45 215 215.1 215 215.0 219 228.0 215 215.0 218.0 221.74 218.0 221.26

d1 60 60.0 61.55 1473.0 1553.55 60 60 60 60.0 60 65.0 60 60.0 61.0 62.26 61.0 62.52

d2 66 66.0 67.64 1719.0 1810.36 66 66 66 66.0 69 70.0 66 66.0 67.0 67.68 67.0 67.55

d3 72 73.0 74.91 1846.0 1978.82 72 72.2 72 72.0 76 79.0 72 72.0 73.0 74.81 73.0 75.16

d4 62 62.0 63.82 1517.0 1634.45 62 62 62 62.0 63 66.5 62 62.0 62.0 62.55 62.0 62.94

d5 61 61.0 62.45 1513.0 1628.55 61 61 61 61.0 63 65.0 61 61.0 61.0 62.23 61.0 62.58

255.51 259.87 859.09 923.38 253,82 254,1 253,78 253,80 256,38 268,49 253,78 253,78 256.0 261.06 256.16 261.36

On the other hand, we present convergence plots (Figs. 2a-2d) and exploration-
exploitation states (Figs. 2e-2h) of the implemented algorithms (BLC-PSO,
MIR-PSO, QL-PSO, and BQSA-PSO). For the state plots, we have utilized the
equations described in [17], which allow us to determine diversity [8] and sub-
sequently calculate the exploration or exploitation states of the algorithm [33].
The plots are defined as follows: on the X-axis, the total number of iterations is
presented. For the convergence plots, the Y-axis represents the fitness, while for
states plots, it corresponds to the percentage related to exploration or exploita-
tion. The equations for diversity determination and exploration-exploitation cal-
culation are as follows:
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Div =
1

l · n

l∑
d=1

n∑
i=1

|x̄d − xd
i |, (11)

Where Div represents the diversity state determination, x̄d denotes the mean
of individuals in dimension d, xd

i is the value of the i-th individual in the d-th
dimension, n is the number of individuals in the population, and l is the size of
the individuals’ dimension.

XPL% =
Div

Divmax
· 100, (12)

XPT% =
|Div −Divmax|

Divmax
· 100. (13)

Where Div represents the diversity state determined by Eq. 11 and Divmax

denotes the maximum value of the diversity state discovered throughout the
optimization process.

5 Conclusion

In this article, we have presented a study and evaluation of various algorithms,
such as the application of binarized metaheuristic algorithms with our BSS
framework, for solving a combinatorial optimization problem. Our flexible frame-
work allows for choosing the number of actions and the intelligent selector to use.
A comparison among different metaheuristic algorithms demonstrates that we
can achieve different behaviors and scalability depending on the combinations
of actions used. The results demonstrate the effectiveness of metaheuristic algo-
rithms in solving optimization problems and also highlight that some algorithms
have a greater impact on performance. During the analysis, it is worth men-
tioning that algorithms like HEMA or ACL have a 5 million call target, whereas
ours has only 40,000. The exploration and exploitation graphs provide a different
perspective on behavior during the search process, giving us information about
the diversity among individuals, as defined in [33]. The rapid convergence of the
implementations brings efficiency to our solution, which translates into more it-
erations and allows for rapid exploration of different regions of the search space,
increasing the possibility of finding optimal solutions or improving already found
solutions through exploitation. These results can be useful for future research in
the field of combinatorial optimization. Future work will focus on implementing
and integrating a new intelligent selector called Multi-armed Bandit into the
framework. Additionally, the option to evaluate other metaheuristic algorithms
from the literature with similar exploration and exploitation behaviors as pre-
sented in other binary domain problems is considered, in order to validate that
the incorporation of reinforcement learning techniques has the same effect on
them.
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Fig. 2: Convergence and Exploration-Explotation plots of Instance 56 for the
different approaches used.
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Abstract

In a portfolio optimization theory, a rationally minded investor focuses on maximizing potential
profit with respect to possible portfolio losses (risk incurred). In general, the question of how to
adequately estimate and evaluate the risk of a large-scale portfolio or a single asset remains an
important problem in financial risk management. Furthermore, the approach to portfolio opti-
mization is an important aspect as well, where different types of optimization processes may be
employed. For this reason, metaheuristic algorithms are also finding increasing use in the field of
computational finance.

The major contribution of this work is to provide a time-dependent risk (dispersion) measure
which is an alternative to the “accrued returns variability” (ARV) introduced by Ruttiens, [7].
Moreover, we enhance the existing literature focused on portfolio theory and trend-dependent risk
measures, [2], [3], [4], [5], [8]. In the original work of Ruttiens, the ARV is calculated as the standard
deviation of spreads between cumulative returns and a trend risk free variation of these returns at
each time leading to the same final cumulative returns. Rather, the definition of the non-volatile
linear alternative formulation could correspond to the analysis of trend dispersion. The mathemat-
ical formulation of the presented dynamic risk measure can be more precise when we consider the
mean of squared spreads of cumulative return series with respect to the non-volatile benchmark.
Therefore, our “modified accrued returns variability” (modARV) is more accurate in the portfolio
optimization framework while minimizing distortion with respect to the predefined zero-risk linear
trend. We also define modified dependency measures, such as covariance and correlation, derived
from the proposed risk measures.

In the context of portfolio optimization, we apply newly proposed trend–risk measures and
dependency matrices in complex mean–variance portfolio selection strategies to demonstrate their
properties in the portfolio theory. In particular, to evaluate the effect of trend-dependent risk
measures, we compare the mean–variance optimization strategy with a new compounded double
optimization framework (strategy). This double optimization strategy consists of two steps. In the
first step, we fit optimal portfolios of the mean–variance efficient frontier. In the second step, we
determine the minimum modified Ruttiens risk measure fixing the expected mean and the final
wealth of the optimal mean–variance portfolios in order to minimize the deviations with respect
to the trend. To reduce the dimensionality of the portfolio, we use parametric and nonparamet-
ric returns approximation techniques with PCA applied to linear or trend-dependent correlation
matrices, [1], [3], [6]. According to this empirical analysis, the newly proposed approach leads
to the mitigation of shortcomings and improves the ex-post portfolio statistics compared to the
mean–variance scenarios.

The empirical results showed that using the nonparametric RW approximation, the wealth is
smoother during the investment and return series are less variable, with insignificant differences in
the profitability. Moreover, we have demonstrated that:

– the integration of time-dependent or trend–risk measures as an alternative in the optimization
process expands our insight into the issue of portfolio selection strategy;

– a trend–risk double optimization portfolio strategy outperforms the profitability of the simple
mean–variance selection strategy;
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– in general, these risk measures appear to be more useful in the finance sense as well as attractive
to risk-avoiding investors.

The potential of this concept is to integrate different types of function (e.g. the exponential)
to capture trend preferences or replace it with the market trend. Furthermore, we could consider
replacing the mean–variance model for the first optimization with a max-ratio model.
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Abstract. The automatic design of multi-objective metaheuristics is an active research
line aimed at, given a set of problems used as training set, to find the configuration of
a multi-objective optimizer able of solving them efficiently. The expected outcome is that
the auto-configured algorithm can be used of find accurate Pareto front approximations for
other problems. In this paper, we conduct a study on the meta-optimization of the well-
known NSGA-II algorithm, i.e., we intend to use NSGA-II as an automatic configuration
tool to find configurations of NSGA-II. This search can be formulated as a multi-objective
problem where the decision variables are the NSGA-II components and parameters and the
the objectives are quality indicators that have to be minimized. To develop this study, we
rely on the jMetal framework. The analysis we propose is aimed at answering the following
research questions: RQ1 - how complex is to build the meta-optimization package?, and RQ2
- can accurate configurations be found? We conduct an experimentation to give an answer
to these questions.

Keywords: Multi-objective optimization, auto-configuration of metaheuristics, NSGA-II

1 Introduction

The quality of the Pareto front approximations found by multi-objective evolutionary algorithms
is affected on the values of their control parameters. This means that, given a set of problems to
be optimized and a given algorithm, the user has to fine tune the algorithms parameters to get
accurate results. The approach commonly adopted to carry out this task is to try to adjust the
parameters manually by conducting pilot tests, which is a trial-and-error strategy. Furthermore,
this process requires knowledge of the algorithm, which is not usually the case of the users expert
in the problems. The consequence is that those users are likely to end up selecting a well-known
algorithm, typically NSGA-II [1], with default settings.

In this context, an active research line is automatic algorithm configuration [2], consisting in
taking a set of problems as training set to find a particular parameter configuration of the param-
eters to a produce version of the algorithm that, configured with them, can solve those problems
efficiently. An extension of this idea is automatic algorithm design, where not only parameters but
also algorithmic components can be combined to design a new algorithmic variant. An advantage
of these approaches is that they can be supported by tools that help to find the configurations
automatically, such as irace [3], paramILS [4], GSF [5] and SMAC3 [6]. Focusing on multi-objective
evolutionary algorithms, irace has been applied in several works [7][8][9].

In this paper, we conduct a study about the use of NSGA-II to find configurations of NSGA-II,
i.e., using NSGA-II as meta-optimizer. The basic idea is to consider the auto-design of NSGA-II
as a multi-objective problem, where the decision variables represent parameters and components
and the objectives can be combinations of quality indicators [10].

Our motivation stems, first, from our experiences in automatic design of multi-objective meta-
heuristics, which are based on combining the jMetal optimization framework [11, 12] with irace to
find configurations of NSGA-II [13][14] and particle swarm optimizers [15]. Second, a recent survey
[2] that remarked as future research prospects easy-to-use algorithm tuning and multi-objective
approaches. Although our proposal does not include a toolbox (as suggested the mentioned sur-
vey [2]), we design a package based on jMetal, so we do not need to use external tools such as
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irace, thus simplifying the auto-design process in case the optimization problems are implemented
with that framework.

We define two research questions that we intend to answer in our our study:

– RQ1: how complex is to build the meta-optimization package?. We are interested in a simple
and easy-to-use software solution.

– RQ2: can accurate configurations be found? The search capabilities of the meta-optimizer must
be validated by conducting representative experiments.

The rest of the paper is organized as follows. Section 2 provides a detailed description of the
presented approach for the automated design of a meta-optimizer for NSGA-II. In Section 3, we
present the results of three experiments conducted to validate our proposal. The findings and
implications of these experiments are discussed in Section 4, while Section 5 provides conclusions
about the effectiveness and usefulness of our study.

2 Meta-Optimization Approach

The process of auto-designing evolutionary algorithms requires three elements: the design space,
an algorithmic template, and an auto-design tool. We describe these elements next, including how
we cope with them.

2.1 Design space

The design space is composed of the algorithm parameters and components, their types, allowed
values, and, optionally, constraints. In the case of NSGA-II, we consider a flexible definition of it,
in which a multi-objective evolutionary algorithm adopting a replacement strategy based on dom-
inance ranking and the crowding distance density estimator is considered a NSGA-II variant. We
define the design space detailed in Table 1, which is similar to the ones used in former works [9][14]
(please refer to these references for a detailed explanation of the parameters and components).

Parameter/Component Type Domain
algorithmResult c {externalArchive, population}

populationSizeWithArchive i [10, 200] s.t. algorithmResult == externalArchive
externalArchive c {crowdingDistance, unbounded} s.t. algorithmResult == externalArchive

offspringPopulationSize i [1, 400]
selection c {tournament, random}

selectionTournamentSize i [2, 10] s.t. selection == tournament
createInitialSolutions c {random, latinHypercubeSampling, scatterSearch}

crossover c {SBX, BLX ALPHA, wholeArithmetic}
crossoverProbability r [0.0, 1.0]

crossoverRepairStrategy c {random, round, bounds}
sbxDistributionIndex r [5.0, 400.0] s.t. crossover == SBX

blxAlphaCrossoverAlphaValue r [0.0, 1.0] s.t. crossover == BLX ALPHA
mutation c {uniform, polynomial, linkedPolynomial, nonUniform}

mutationProbabilityFactor r [0.0, 2.0]
mutationRepairStrategy c {random, round, bounds}

polynomialMutationDistributionIndex r [5.0, 400.0] s.t. mutation ∈ {polynomial, linkedPolinomial}
uniformMutationPerturbation r [0.0, 1.0] s.t. mutation == uniform

nonUniformMutationPerturbation r [0.0, 1.0] s.t. mutation == nonUniform

Table 1: Design space of the configurable NSGA-II in jMetal. Types: (c)ategorical, (i)nteger, (r)eal.

An example of parameter is the offspring population size, which is an integer variable taking
values in the range [1, 400] (a value of 1 would lead to a steady-state version of NSGA-II). Examples
of components are the crossover and mutation operators. Each operators can in turn also have
specific parameters, such as the distribution index for SBX crossover.

A design decision is whether NSGA-II uses an external archive (i.e., an auxiliary population) or
not. If the population size is P , the idea is that any evaluated solution is inserted into the archive,
which keeps only non-dominated solutions, and the result of the algorithm would be P solutions
from the archive; in this case, the population size is not fixed and it can take a value between 10
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and 200. The external archive can be bounded (the crowding distance is used as density estimator
to remove solutions when the archive size is greater than P ) or unbounded (in this case, all the
evaluated solutions are inserted and, when the algorithm finishes, P evenly spread solutions are
returned).

2.2 Algorithmic template

Since release 6.0, jMetal includes a jmetal-auto package containing an implementation of NSGA-II,
called AutoNSGAII, which can take any valid combination of the parameters and components of
Table 1, generating different NSGA-II versions.

The input of AutoNSGAII is a string containing all the parameter names and their values.
This string is parsed internally and AutoNSGAII is configured with the parameter values and
the components specified in the string. An example of a subset of this string is the following:
“–archiveResult externalArchive –offpringPopulation 40 –selection tournament ...”

2.3 Meta-optimizer

In our previous works combining jMetal with irace [13][14], the finding of configurations is based on
running irace, which generates combinations of valid configurations according to the design space.
For each configuration, irace runs AutoNSGAII, which returns as a result the value of a quality
indicator; this value is taken by irace as a measure of the quality of the configuration.

As we intend to replace irace by the NSGA-II algorithm implemented in jMetal, which would
act as meta-optimizer, we have to formulate and implement the optimization problem that would
to be solved by the meta-optimizer. This problem has the following parameters:

– List of problems used as training set.

– List of quality indicators, being each indicator an objective to be minimized.

– The population size of AutoNSGAII.

– The stopping condition of AutoNSGAII (in terms of number of evaluations).

– Number of independent runs of AutoNSGAII for each configuration to be evaluated.

To define the problem encoding, the approach we have adopted is simple: every parameter of
Table 1 is represented as a real value in the range [0.0, 1.0], so the solutions are composed of 18
decision variables. When a solution has to be evaluated, the variables are decoded to construct the
parameter string that is used when calling AutoNSGAII. The decoding is done as follows:

– Real parameter: the value is scaled up from [0.0, 1.0] to the range of the parameter (e.g.,.
[5.0, 400.0] in the case of the SBX distribution index).

– Integer parameter: same procedure as for real parameters, but the resulting value is truncated.

– Categorical parameter: the interval [0, 0, 1, 0] is divided into sub-intervals according to the
number of parameter values, and the index of the sub-interval is used to obtain the actual
categorical value.

Once the parameter string is decoded, AutoNSGAII is called to solve all the problems of the
training set as many times as the number of independent runs. For each obtained front, the quality
indicators are computed and the resulting objectives values of evaluating a configuration is the
median of the median of the quality indicators of all the problems of the training set.

We now look at the pros and cons of this approach. Starting by the cons, we are not considering
parameter constraints, so all the elements of design space are included although some of them may
be ignored (e.g., the uniform perturbation is useless if the selected mutation operator is polynomial),
and the discretization of categorical parameters using sub-intervals can lead to different solutions
being equivalent if all variables have the same values except one corresponding to a categorical
parameter whose values are in the same sub-interval. As advantages, the encoding is very simple
and any multi-objective algorithm in jMetal able of solving continuous problems can be used as
meta-optimizer.
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3 Experimentation

We aim to empirically validate our approach with a set of experiments grouped into two different
scenarios. These experiments are described below, detailing their purpose, expected outcomes and
results.

The meta-optimizer is configured with the additive epsilon (EP) and normalized hypervolume
(NHV) quality indicators as the objective functions to be minimized. The first indicator measures
the convergence of a Pareto front approximation while the second one takes into account both
convergence and diversity [10]. We use NHV instead of plain hypervolume as for this latter, the
bigger its value the better, while jMetal minimizes objective functions by default. NHV is defined
as 1.0 minus the hypervolume of the front divided by the hypervolume of the reference front.

For the meta-optimizer, we have configured it with common NSGA-II parameter values. The
population size is 50 and the variation operators are SBX crossover (with probability 0.9 and
a distribution index value of 20.0) and polynomial mutation (with probability 1/n, being n the
number of decision variables of the problem, and a distribution index value of 20.0). We set the
stopping to condition to 3000 function evaluations. The NSGA-II implementation in jMetal can
be executed in parallel both using a synchronous or an asynchronous scheme [16].

Next, we define two scenarios and three experiments.

3.1 Scenario 1: Finding Configurations for Single Problems

The first scenario is aimed at determining whether our meta-optimization approach is able of finding
well-performing configurations of NSGA-II for single problems. For that, we focus on experimenting
with two problems:

– Experiment 1 - problem ZDT4: this problem [17] is a bi-objective multi-frontal problem,
whose default configuration consists of 10 decision variables. The standard NSGA-II has dif-
ficulty in providing Pareto front approximations with a uniform spread of solutions. Previous
studies [13] have shown that using a steady-approach can significantly improve the diversity of
the fronts. Pilot tests also indicate that comparable improvements can be achieved when using
an external bounded archive.

– Experiment 2 - problem DTLZ3: This problem belongs to the DTLZ benchmark [18].
It is formulated with a default configuration consisting of twelve decision variables and three
objectives. DTLZ3 is also a multi-modal problem with a convex Pareto front. The study pre-
sented in [9] showed that both, NSGA-II and the AutoNSGAII, configured with irace were
unable to find accurate approximated fronts in terms of convergence and diversity for this
problem.According to other works [19], NSGA-II is able of finding accurate fronts for problem
DTLZ2 when using an external unbounded archive and retrieving from it a subset of evenly
distributed solutions. DLTZ2 is not multi-modal but shares many similarities with DTLZ3 (i.e.,
convex Pareto front, three objectives, and twelve decision variables). Our aim here is twofold:
1) to determine whether the meta-optimizer is able of finding a configuration to effectively
solve DTLZ3; and, 2) to check if that configuration includes an unbounded archive.

3.2 Scenario 2: Finding Configurations for Sets of Problems

The above scenario must validate the potential of auto-configuration applied to optimize single
problems. The found configurations may be, however, too specific to that particular problem, and
perform poorly for other problems (overfitting). Our second scenario addresses this issue by auto-
configuring the algorithm on a set of problems instead of just one. Additionally, the obtained
configurations are validated using different sets of problems.

– Experiment 3 - WFG benchmark: This experiment aims to replicate the study presented
in [9]. NSGA-II is configured for optimizing the nine problems of the WFG suite [20], which
are training set. The found configurations are later used to solve both the WFG problems and
the seven instances of the DTLZ family problems–the validation set. All the problems in this
experiment are formulated as bi-objective ones.
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Parameter NSGA-II Exp. 1 Exp. 2 Exp. 3
populationSize 100 100 100 100
createInitialSolutions random LHS scatterSearch random
algorithmResult population externalArchive externalArchive externalArchive
externalArchive - CD unboundedArchive CD
populationSizeWithArchive - 106 58 61
offspringPopulationSize 100 60 130 68
crossover SBX SBX SBX BLX ALPHA
crossoverProbability 0.9 0.991 0.942 0.858
crossoverRepairStrategy random round random bounds
sbxDistributionIndexValue 20.0 5.11 70.479 -
blxAlphaCrossoverAlphaValue - - - 0.547
mutation polynomial polynomial uniform linkedPolynomial
mutationProbabilityFactor 1 0.76 0.699 0.161
mutationRepairStrategy random bounds round round
polynomialMutationDistributionIndex 20 32.23 - -
linkedPolynomialMutationDistributionIndex - - - 11.335
uniformMutationPerturbation - - 0.417 -
selection tournament tournament random tournament
selectionTournamentSize 2 9 - 4

Table 2: Best configuration found for the NSGA-II on each experiment. (LHS; latinHypercube-
Sampling, CD; crowdingDistanceArchive)

3.3 Results

We report and analyze the results obtained on the three defined experiments. In all the cases, the
number of independent runs per configuration is set to 3.

Experiment 1 We set the stopping condition of AutoNSGAII to perform a total 15000 func-
tion evaluations. Fig. 1 shows computed fronts by the meta-optimizer at 1000, 2000, and 3000
evaluations. As shown, the final front is composed of only one solution, and the figure suggests
that the meta-optimizer might not have converged in the performed evaluations. The found design
in this experiment (see Table 2) includes a bounded external archive with crowding distance; as
commented before, the use of this kind of archive is known to be beneficial for converging and for
achieving a front of evenly spread solutions.

AutoNSGAII with the obtained configuration is compared with NSGA-II with default settings
next. We set the stopping condition to 25000 function evaluations in both cases and compare the
Pareto front approximations computed by both algorithms. We observe that the front computed
with the found configuration (Fig. 2 right) has a noticeable better convergence and spread than
the approximation computed by NSGA-II with standard the default setting (Fig. 2 left).
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Fig. 1: Problem ZDT4. Evolution of the front generated by the meta-optimizer.

Experiment 2 In this experiment, the stopping criterion for AutoNSGAII has been raised to
20000 evaluations.
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Fig. 2: Problem ZDT4. Pareto front approximation found by the standard NSGA-II (left), and
Pareto front approximation found by the auto-designed NSGA-II (right).
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Fig. 3: Problem DTLZ3. Evolution of the front generated by the meta-optimizer.

Fig. 3 shows the approximation fronts computed after 1000, 2000 and 3000 evaluations. In this
case, the figure suggest that the meta-optimizer has almost converged after performing the 3000
function evaluations. The computed approximation front consists of twelve points. The configu-
ration corresponding to the point with the lowest NHV value (on the right end) is included in
Table 2. As expected, the configuration found by the meta-optimizer uses the unbounded external
archive.

In Fig. 4, we compare the approximation front computed with NSGA-II and the one computed
with the configuration found the meta-optimizer using AutoNSGAII. In both cases, we use 40000
function evaluations as stopping criterion. The graph shows remarkable differences between the
front computed by NSGA-II (poor convergence and coverage of the Pareto front approximation)
and AutoNSGAII.

Experiment 3 In alignment with existing work [9], we set the stopping criterion of AutoNSGAII
to 25000 evaluations for this experiment. The evolution of the fronts over different number of
evaluations is shown in Fig. 5. As in the previous experiment, the point with the minimum NHV
value is taken and its corresponding configuration is used to compare with the results reported
in [9]. The comparison in this case includes NSGA-II, and SMPSO [21] with their default settings
and AutoNSGAII with the mentioned configuration.

The chosen configuration from the meta-optimizer is summarized in Table 2. Interestingly, this
configuration is similar to the one computed in [9]: both share the use use BLX ALPHA crossover
and an external bounded archive).
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Fig. 4: Problem DTLZ3. Pareto front approximation found by the standard NSGA-II (left), and
Pareto front approximation found by the auto-designed NSGA-II (right).

Table 3 showcase the validation results of the auto-designed NSGA-II for the WFG and DTLZ
benchmarks. Tables (a) and (b) contains the Hypervolume indicator values and Tables (c) and
(d) the Epsilon ones. As a general remark, the configurations found by our proposal yield similar
indicator values (each cell includes the median of 25 independent runs) than those presented in
previous work [9]. Additionally, this results are also supported by the Wilcoxon rank sum statistical
test for significance. The results of the Wilcoxon test are included in Table 4. We can observe that
statistical confidence has been found in most of the results.
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Fig. 5: WFG problem family. Evolution of the front generated by the meta-optimizer.

4 Discussion

Once we have conducted the two defined experiments, we revisit the two formulated research
questions in the introduction, and we attempt to answer them based on the obtained results.

4.1 Research Questions

RQ1 - approach complexity: Our meta-optimization package relies only on jMetal code, so it
does not require any external tool. The AutoNSGAII template within jMetal, designed and used
in former studies, combined with irace simplifies the formulation of the auto-design of NSGA-II
as a continuous optimization problem. We hope that researchers familiar with jMetal can benefit
from the use of the meta-optimizer with little effort.
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NSGAII SMPSO AutoNSGAII

WFG1 4.35e− 011.8e−01 1.17e− 018.0e−03 6.34e− 011.8e−05

WFG2 5.61e− 012.3e−03 5.61e− 011.6e−03 5.64e− 019.2e−05

WFG3 4.92e− 018.3e−04 4.92e− 016.1e−04 4.95e− 016.1e−05

WFG4 2.17e− 013.7e−04 2.03e− 012.4e−03 2.18e− 011.5e−03

WFG5 1.95e− 013.5e−04 1.96e− 017.8e−05 1.96e− 019.8e−05

WFG6 2.01e− 011.3e−02 2.09e− 015.0e−04 2.02e− 011.4e−02

WFG7 2.09e− 015.5e−04 2.09e− 012.7e−04 2.11e− 013.5e−05

WFG8 1.47e− 012.7e−03 1.47e− 013.4e−03 1.40e− 013.1e−03

WFG9 2.37e− 011.8e−03 2.35e− 015.8e−04 2.39e− 012.0e−03

DTLZ1 4.88e− 017.9e−03 4.94e− 012.7e−04 0.00e+ 004.9e−01

DTLZ2 2.09e− 014.7e−04 2.10e− 011.6e−04 2.11e− 013.6e−05

DTLZ3 0.00e+ 001.8e−02 2.10e− 011.2e−01 0.00e+ 000.0e+00

DTLZ4 2.09e− 012.1e−01 2.10e− 018.7e−05 2.11e− 017.2e−05

DTLZ5 2.11e− 013.4e−04 2.12e− 012.2e−04 2.12e− 014.5e−05

DTLZ6 1.82e− 013.6e−02 2.12e− 018.1e−05 2.12e− 014.2e−05

DTLZ7 3.34e− 013.0e−04 3.35e− 011.2e−04 3.35e− 019.2e−05

(a) Current study results using as objective the Hy-
pervolume.

NSGAII SMPSO AutoNSGAII

WFG1 4.49e− 017.6e−02 1.16e− 017.7e−03 6.34e− 012.6e−05

WFG2 5.64e− 019.5e−04 5.62e− 011.2e−03 5.65e− 015.1e−05

WFG3 4.41e− 013.8e−04 4.41e− 012.2e−04 4.42e− 011.1e−05

WFG4 2.17e− 017.6e−04 2.03e− 012.4e−03 2.17e− 013.0e−03

WFG5 1.95e− 012.9e−04 1.96e− 017.5e−05 1.96e− 011.0e−04

WFG6 2.03e− 018.9e−03 2.09e− 014.3e−04 2.08e− 011.3e−02

WFG7 2.09e− 013.5e−04 2.09e− 013.2e−04 2.11e− 013.1e−05

WFG8 1.48e− 012.3e−02 1.48e− 011.0e−03 1.39e− 012.3e−03

WFG9 2.37e− 012.9e−03 2.35e− 018.2e−04 2.39e− 011.9e−03

DTLZ1 4.66e− 011.6e−01 4.94e− 011.9e−04 0.00e+ 000.0e+00

DTLZ2 2.09e− 012.7e−04 2.10e− 011.5e−04 2.11e− 014.1e−05

DTLZ3 0.00e+ 000.0e+00 2.10e− 016.3e−02 0.00e+ 000.0e+00

DTLZ4 2.10e− 017.1e−04 2.10e− 011.5e−04 2.11e− 014.2e−05

DTLZ5 2.11e− 013.5e−04 2.12e− 011.3e−04 2.12e− 014.1e−05

DTLZ6 1.89e− 051.4e−03 2.12e− 016.9e−05 2.12e− 015.6e−05

DTLZ7 3.29e− 012.8e−04 3.30e− 019.8e−05 3.30e− 017.3e−05

(b) Results obtained from [9] with irace using as ob-
jective the Hypervolume.

NSGAII SMPSO AutoNSGAII

WFG1 2.94e− 012.7e−01 4.56e− 011.3e−02 6.19e− 035.6e−04

WFG2 1.81e− 011.7e−01 6.70e− 032.8e−03 4.03e− 035.0e−04

WFG3 1.33e− 022.8e−03 7.39e− 038.4e−04 5.40e− 032.2e−04

WFG4 1.21e− 023.6e−03 2.19e− 022.6e−03 6.33e− 031.1e−03

WFG5 3.31e− 022.8e−03 2.78e− 023.9e−04 2.76e− 021.8e−04

WFG6 1.49e− 021.0e−02 6.19e− 035.9e−04 1.00e− 029.0e−03

WFG7 1.20e− 024.4e−03 6.34e− 039.1e−04 5.18e− 032.6e−04

WFG8 2.44e− 011.0e−01 1.75e− 012.1e−02 2.45e− 011.0e−03

WFG9 1.47e− 022.7e−03 1.12e− 021.2e−03 7.19e− 031.6e−03

DTLZ1 1.60e− 025.2e−03 6.30e− 037.0e−04 5.16e− 011.0e+00

DTLZ2 1.23e− 022.8e−03 5.59e− 033.7e−04 5.23e− 032.2e−04

DTLZ3 1.14e+ 001.4e+00 6.20e− 037.0e−01 1.16e+ 018.4e+00

DTLZ4 1.18e− 029.9e−01 5.68e− 033.7e−04 5.38e− 033.0e−04

DTLZ5 1.14e− 022.5e−03 5.25e− 032.5e−04 5.05e− 032.1e−04

DTLZ6 2.77e− 022.4e−02 5.22e− 036.6e−04 5.09e− 031.9e−04

DTLZ7 1.02e− 023.5e−03 4.68e− 034.6e−04 4.50e− 033.5e−04

(c) Current study results using as objective the Ep-
silon.

NSGAII SMPSO AutoNSGAII

WFG1 4.52e− 012.4e−01 4.55e− 019.8e−03 5.99e− 037.3e−04

WFG2 5.41e− 032.4e−03 6.04e− 031.1e−03 3.88e− 035.5e−04

WFG3 3.34e− 015.3e−04 3.34e− 011.9e−04 3.33e− 012.7e−07

WFG4 1.29e− 022.2e−03 2.16e− 023.4e−03 6.72e− 031.2e−03

WFG5 3.31e− 023.7e−03 2.77e− 021.9e−04 2.76e− 021.6e−04

WFG6 1.50e− 025.9e−03 6.37e− 034.9e−04 6.13e− 037.2e−03

WFG7 1.28e− 024.0e−03 6.52e− 034.9e−04 5.20e− 031.9e−04

WFG8 1.68e− 011.0e−01 1.69e− 011.7e−02 2.45e− 011.3e−03

WFG9 1.42e− 022.0e−03 1.10e− 021.9e−03 7.39e− 031.2e−03

DTLZ1 3.53e− 021.5e−01 6.30e− 035.5e−04 3.08e+ 011.7e+01

DTLZ2 1.12e− 024.2e−03 5.53e− 033.2e−04 5.28e− 032.5e−04

DTLZ3 1.00e+ 016.4e+00 5.97e− 033.5e−01 1.05e+ 023.6e+01

DTLZ4 1.18e− 025.4e−03 5.61e− 033.1e−04 5.32e− 031.9e−04

DTLZ5 1.01e− 022.2e−03 5.12e− 033.5e−04 5.03e− 032.7e−04

DTLZ6 3.72e− 015.3e−02 5.15e− 034.5e−04 5.06e− 032.9e−04

DTLZ7 7.78e− 032.6e−03 4.30e− 032.3e−04 4.06e− 032.8e−04

(d) Results obtained from [9] with irace using as ob-
jective the Epsilon.

Table 3: The cells include the median and interquartile range of 25 independent runs. The dark-grey
and light-grey background cells indicate, respectively, the best and second best indicator values.

SMPSO AutoNSGAII

NSGAII ▲ − ▽ ▲ ▽ ▽ ▽ − ▲ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ − ▽ − ▽ ▲ ▽ ▲ ▽ ▲ ▽ ▽ ▽ ▽
SMPSO ▽ ▽ ▽ ▽ − ▲ ▽ ▲ ▽ ▲ ▽ ▲ ▽ ▽ ▽ −

(a) Current study results using as objective the Hy-
pervolume.

SMPSO AutoNSGAII

NSGAII ▲ ▲ ▽ ▲ ▽ ▽ − − ▲ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ − ▽ − ▽ ▲ ▽ ▲ ▽ − ▽ ▽ ▽ ▽
SMPSO ▽ ▽ ▽ ▽ − − ▽ ▲ ▽ ▲ ▽ ▲ ▽ ▽ ▽ ▽

(b) Results obtained from [9] with irace using as ob-
jective the Hypervolume.

SMPSO AutoNSGAII

NSGAII ▲ ▽ ▽ ▲ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▲ ▽ – ▽ ▲ ▽ ▽ ▽ ▽
SMPSO ▽ ▽ ▽ ▽ ▽ ▲ ▽ ▲ ▽ ▲ ▽ ▲ ▽ ▽ ▽ –

(c) Current study results using as objective the Ep-
silon.

SMPSO AutoNSGAII

NSGAII – – ▽ ▲ ▽ ▽ ▽ – ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▲ ▽ ▲ ▽ ▲ ▽ ▽ ▽ ▽
SMPSO ▽ ▽ ▽ ▽ ▽ – ▽ ▲ ▽ ▲ ▽ ▲ ▽ ▽ – ▽

(d) Results obtained from [9] with irace using as ob-
jective the Epsilon.

Table 4: Wilcoxon rank sum test results. The symbols in each cell correspond to problems WFG1-9
and DTLZ1-7. The symbols indicate: “–” no stadistical significance, “▲” the algorithm in the row
has a better indicator value than the algorithm in the row with confidence and “▽” the algorithm
in the row has a worse indicator value than the algorithm in the row with confidence
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RQ2 - finding of accurate designs: We have adopted a simple encoding for the NSGA-II con-
figurations consisting in codifying each parameters as a floating point value in the range [0.0, 1.0],
and these values are further decoded into a string that used as the input of the AutoNSGAII
template. This configuration has been proved effectively by our empirical experiments. The first
two experiments showed that the meta-optimizer has been able to generate the expected key com-
ponents required by NSGA-II to converge to the Pareto front of the selected problems. For these
experiments we provided visual evidence. Additionally, the generalization capabilities of the auto-
tuner were challenged by requiring it to find an accurate configuration for a training set composed
of nine problems, and validating the found configurations on a set of additional seven problems.
The experiment we have accomplished shows almost identical results to the previously published
work were irace was used as auto-configuration tool.

4.2 Further Remarks

Our empirical evaluation also revealed a few issues that are worth discussing:

– The formulation of searching designs for NSGA-II as a continuous problem opens the oppor-
tunity of using most of the metaheuristics provided by jMetal as meta-optimizers. This enable
the easy development comparative studies based on configuring AutoNSGAII with different
training sets.

– Although we have used two quality indicators, EP and NHV, as objectives for guiding the
search, the inclusion of additional ones (e.g., spread, inverted generational distance, etc.) could
reveal new insights regarding the configurations for solving different problems.

– We used NSGA-II with standard settings as the meta-optimizer. The obtained results in this
paper could be used in order to analyze whether its performance could be improved if using
different parameter settings.

– We have performed only a run of the meta-optimizer in the experiments. A deeper study should
be carried out by performing a number of independent runs and making statistical analysis of
the results.

5 Conclusions and Future Work

In this paper we have presented a study in which the NSGA-II algorithm is used as a meta-
optimizer, i.e., as a tool that, given a set of problems as training set, is aimed at finding config-
urations that include NSGA-II parameters and components. By using a simple encoding scheme
and the features existing in jMetal that were developed in former studies, our proposal is 100%
developed in jMetal, so no external tools are required.

We have defined an experimentation to validate our proposal considering two scenarios and
three experiments to cover both automatic search of NSGA-II designs for single and multi-problem
training sets. The outcomes of these experiments reveal that the meta-optimizer is able of finding
configurations of NSGA-II that successfully achieve the defined goals.

We have indicated a number of open research lines in the discussion section. Additionally, to
reduce the computing time of the meta-optimization, we have set in Experiments 1 and 2 a number
of function evaluations which is lower than the used when validating the configurations; we are
interested in studying to what extent the number of evaluations can be reduced in the search while
the resulting NSGA-II designs are able of solving the problems efficiently.
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Iterated racing for automatic algorithm configuration. Operations Research Perspectives 3 (2016)
43–58
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7. Bezerra, L.C.T., López-Ibáñez, M., Stützle, T.: Automatic component-wise design of multiobjective
evolutionary algorithms. IEEE Transactions on Evolutionary Computation 20 (2016) 403–417
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Nieto, J., Engelbrecht, A., Pinciroli, C., Strobel, V., Camacho-Villalón, C., eds.: Swarm Intelligence,
Cham, Springer International Publishing (2022) 28–40

16. Durillo, J.J., Nebro, A.J., Luna, F., Alba, E.: A study of master-slave approaches to parallelize nsga-ii.
In: 2008 IEEE International Symposium on Parallel and Distributed Processing. (2008) 1–8

17. Zitzler, E., Deb, K., Thiele, L.: Comparison of multiobjective evolutionary algorithms: Empirical
results. Evolutionary Computation 8 (2000) 173–195

18. Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable Test Problems for Evolutionary Multi-
Objective Optimization. In Abraham, A., Jain, L., Goldberg, R., eds.: Evolutionary Multiobjective
Optimization. Theoretical Advances and Applications. Springer (2001) 105–145

19. Ishibuchi, H., Pang, L.M., Shang, K.: A new framework of evolutionary multi-objective algorithms
with an unbounded external archive. In Giacomo, G.D., Catalá, A., Dilkina, B., Milano, M., Barro,
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Abstract. Black-box auto-tuning methods have been proven to be efficient for tuning con-
figurable computer appliance. However, because of the shared nature and the complexity
of the software and hardware stack of some systems such as cloud or HPC systems, the
measurement of the performance function can be tainted by noise during the tuning process,
which can reduce and sometime prevent, the benefit of auto-tuning. An usual choice is to
add a resampling step at each iteration to reduce uncertainty, but this approach can be
time-consuming. In this paper, we propose a new resampling and filtering algorithm called
EVADyR (Efficient Value Aware Dynamic Resampling). This algorithm is able to tune ef-
ficiently a prefetching strategy in the case of multiple parallel accesses. Because it finds a
better exploration versus exploitation trade-off by resampling only promising parametriza-
tions and increases the level of confidence around the suggested solution as the tuning process
advances, it outperforms state of the art dynamic resampling by reducing the distance to
the optimum by 93.5%, as well as speed-up the experiment duration by 45.8% because less
iterations are needed to reach the found optimum. An additional proof of this study is the
demonstration of the importance of using noise reduction strategies for the optimization of
highly shared resources such as HPC or cloud systems.

Mots-Clefs. Auto-tuning, Black-box optimization, High Performance Computing, Stochas-
tic Optimization, Resampling

1 Introduction
Most of the software of modern computer systems come with many configurable parameters
that control the system’s behavior and its interaction with the underlying hardware. These
parameters are challenging to tune by solely relying on field insight and user expertise, due
to huge parametric spaces and complex, non-linear system behavior and environment vari-
ations. Consequently, users often have to rely on the default parameters and do not take
advantage of the possible performance that the system could deliver for their applications.
As users are not easily able to take adequate decisions for the parametrization of complex
systems, new tuning methods, usually called auto-tuning methods, have emerged from the
optimization and machine learning fields to automate parameter selection depending on the
current workload. They have been successfully applied to a wide range of systems, such as
storage systems, database management systems and compilers.
Among existing auto-tuning methods, black-box optimization has been demonstrated to be
successful for tuning a wide range of computer systems. However, these studies were done
under the assumption that the tuned system is deterministic, i.e. a given parametrization
will always yield the same execution time. While this hypothesis is valid when working in a
controlled and exclusive test environment, it does not always hold for systems that rely on
shared resources, such as cloud or HPC systems. Due to the high cost of dedicating exclu-
sive resources, complex system auto-tuning often occurs in shared environments, requiring
automatic tuning methods to consider potential interference, which we will call "noise",
that can degrade the performance of traditional auto-tuning heuristics, as the performance
of the system being tuned can vary due to fluctuations in resource availability or the pres-
ence of competing tasks, independently from the tested parameters. The black-box optimizer
risks matching the input parameters with the random variations in the performance, rather
than the performance itself. Sub-optimal parameter configuration that appears good due to
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favorable conditions, such as low system activity, can be retained, while good parameter
configurations may be rejected if they were evaluated under challenging circumstances, such
as high usage or storage backup events. Consequently, to be used on modern shared systems,
auto-tuning algorithms must be able to distinguish between the true system behavior and
random variations, while remaining as sparse as possible in terms of iterations.
In this paper, we consider the noise present when auto-tuning a highly configurable appliance
aimed at reducing I/O contention in High Performance Computing (HPC) systems, called
the Small Read Optimizer (SRO), and suggest a new resampling algorithm, called EVADyR
(Efficient Value Aware Dynamic Resampling), and show that it outperforms already exist-
ing state-of-the-art.
The main contributions of this paper are:
– The proposition of the original EVADyR resampling algorithm based on dynamic re-

sampling but specifically tailored to the optimization of noisy and expensive function;
– The highlighting of the importance of using noise reduction when tuning systems in

highly shared production environment;
– The validation of this new algorithm on a real-life I/O accelerator with different noisy

context, which compared to state-of-the-art dynamic resampling provides an improve-
ment of the quality of convergence of 93.5% and a speed-up of the experiment duration
by 45.76% for the tuned system.

This paper is organized as follows. Section 2 covers related works and section 3 the main prin-
ciples of Bayesian Optimization and some of the state of the art noise reduction techniques.
Section 4 presents the proposed EVADyR algorithm to improve resampling algorithms, sec-
tion 5 the experiment plan and section 6 the obtained results. Section 7 concludes this study
by giving some insights into some future work.

2 Related works
In the literature, black-box optimization is a popular choice for tuning different reconfig-
urable systems, and it has been particularly helpful in computer science to look for the
optimal configurations of various software and hardware components. In the field of Big
Data Processing systems, software that are notoriously hard to tune such as Hadoop, Spark
and Storm, have benefited from black-box optimization. It is for example the methodology
chosen by Liao et al. in their Gunther framework [24] which relies on Genetic Algorithms
to find the optimal parametrization of Hadoop. In [20], Jamshidi et al. use Bayesian Op-
timization to optimize the stream processing system Storm. In [9], Desani et al. compare
two derivative-free methods (Bounded Optimization BY Quadratic Approximation method
and Constrained Optimization BY Linear Approximation method) to find the optimal con-
figuration of the Hadoop framework. In Database Management Systems (DBMS), tuning
relying on surrogate modeling with expected improvement and pruning strategies have been
suggested through the iTuned framework designed by Duan et al. in [11]. This framework
has significantly improved the performance of PostgreSQL for different workloads. Also, us-
ing black-box optimization to optimize query has also proven its efficiency using simulated
annealing [19] and genetic algorithms [5].
Storage systems are hard to tune as they have both a very large parametric space with a
strong dependence on the running workload [7]. The efficiency of black-box optimization for
tuning storage systems when faced with different workloads has been explored by Cao et al.
in [8], where they propose a thorough analysis of the behavior of each heuristic. Reinforcement
learning has also been successfully used as an auto-tuner to optimize the performance of
the Lustre filesystem in data center storage systems by Li et al. in [23] and an optimal
parametrization for the several layers of HDF5 library was found using genetic algorithms
by Behzad et al. in [4]. An extension of this auto-tuner which selects the best parameters
according to the I/O pattern is described in [3] by the same authors.
Within the HPC community, auto-tuning has gained a lot of attention for tuning particular
HPC application and improve their portability across architectures. In [35], Seymour et
al. provide a comparison of several random-based heuristic searches (Simulated annealing,
genetic algorithms . . . ) that have provided some good results when used for code auto-
tuning. Bergstra has had good results as well in this field with surrogate modeling using
boosted regression trees [6]. In [26], Menon et al. use Bayesian Optimization and suggest the
framework HiPerBOT to tune application parameters as well as compiler runtime settings.
HPC systems energy consumption can also benefit from Bayesian Optimization, as Miyazaki
et al. have shown in [27] where an auto-tuner based on a combination of Gaussian Process
regression and the Expected Improvement acquisition function has raised their cluster to
the Green500 list. A scheduling algorithm using genetic algorithms has been introduced by
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Kassab et al. in [21] and manages to schedule jobs under a limited energy power constraint.
The MPI community has also shown the superiority of a hill-climbing black-box algorithm
over an exhaustive sampling of the parametric space in [12].
The literature addressing the problem of noise when tuning real systems is surprisingly
sparse, as most of the works detailed in the previous section do not study the potential
interference on the tuned system and do not mention their tuner resilience to possible in-
terference in shared settings. While this is not critical when working on single user systems,
such as local hard drives for personal computers [8], it cannot be ignored when working on
highly parallel shared systems [28]. Several studies do acknowledge their system’s noise [7],
but do not provide any practical solution to make the tuner resilient, other than computing
the mean or the median of the found best parametrization repeated several times [34] [17].
To our knowledge, the only notable exception is the Baloo framework [16] developed by
Grohmann et al. for tuning distributed database systems, which performs adaptive sampling
until the confidence interval around the mean is smaller than a set threshold, or until the
maximum number of reevaluation allowed per parametrization is reached.

3 Bayesian Optimization for noisy systems

3.1 Problem formalization

Formally, let S be the system to optimize and θi its parametrization from the possible
parametrizations of the tunable system Θ = {θi}i∈N. Let A be the optimized application
and E the execution context (the underlying hardware, the number of nodes. . . ) for which
we optimize the application.
Let f : (A, E , Θ) −→ R, θ −→ f(θ) represent the execution time for parametrization θ.
Because of the possible random interference depending on the system’s state, we only have
access to the observed execution time F (θ). These interference, which we will refer to as
noise, can depend on the parametrization or the optimization step and is thus a function of
θ and n, represented by ϵ(θ, n). The vector corresponding to the different sampled values at
parameter θ will be denoted as F (θ)j1≤j≤jθ

, jθ being the number of samples for parameter
θ. The estimation of f at θ is denoted f̂(θ).
With these notations, the optimizer must solve the following problem:

min E(F (θ)), θ ∈ Θ

F (θ) = f(θ) + ϵ(θ, n)

This formula holds in the case of minimization (for example when minimizing the execu-
tion time) and in the case of maximization (for example of the throughput), one can sim-
ply minimize −f . From this definition, we find that in this noisy framework the optimal
parametrization is not the one leading to the quickest run but the one corresponding to the
optimal execution time on average. This ensures that the optimum is not a result of chance.
Throughout the remainder of this paper, the term "optimum" will refer to this average
optimal parametrization.

3.2 Bayesian optimization for auto-tuning

Black-box optimization is a method for optimizing a function with unknown properties that
can only be evaluated a limited number of times. In the context of tuning computer systems,
it involves optimizing the performance of an application based on the relationship between
input parameters (configurable component and execution context) and the output (applica-
tion performance) without having any insight into the internal workings of the system.
Two distinct steps are necessary for black-box optimization: the selection of initial parame-
ters, such as Latin Hypercube Designs [39], and an optimization heuristic selecting at each
iteration the most promising configuration.
Many heuristics have been designed and tested, among which Bayesian Optimization (also
known as Sequential Model Based Optimization). It is an efficient and versatile method for
tuning complex systems, which uses a cheaper to evaluate probabilistic model to approximate
the performance function. Bayesian Optimization requires two components: an acquisition
function that selects the next data point to evaluate and a probabilistic model that represents
the performance function. In our experiments, based on previous study results in [33], we
will use Expected Improvement [39] as an acquisition function and Gaussian processes [31]
as a probabilistic model. The optimization process will continue until the improvement from
the current best objective function value is below a set threshold over a number of iterations.
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3.3 Stochastic black-box optimization

While almost non-existent in the system’s tuning community, black-box optimization with
noisy fitness is a very proficient field when it comes to theoretical research on synthetic
benchmarking function. The available research can be broadly split into two main categories
: heuristic specific noise reduction and heuristic agnostic noise reduction.
In the case of Bayesian Optimization, a possible improvement is the modification of ac-
quisition functions in order to make them handle noisy observations better. For instance,
Gramacy et al. in [15] and Vàsquez et al. in [40] use respectively the mean and a quantile as
an estimation of the performance function through Gaussian Processes when using Bayesian
Optimization. Letham et al. propose in [22] a novel way of defining expected improvement,
called Noisy Expected Improvement, using Quasi Monte Carlo simulation. In [18], Huang et
al. suggest using the Augmented Expected Improvement, which uses a robust estimation of
the best performing parametrization by defining the best solution as the one with the low-
est β-quantile, with β a configurable value. A similar quantile based approach is proposed
by Picheny et al. in [30] where they suggest using the Expected Quantile Improvement to
select the next data point to evaluate. In [14], Forrester et al. suggest using a reinterpola-
tion procedure which uses the results of a Gaussian Process regressor on noisy observations
into another interpolation model which will be used to compute the Expected Improvement.
While these different methods have proven to be efficient when facing different noises on
different benchmarking functions [29], they have the major drawback of being specific to the
selected optimization and cannot be generalized to other heuristics, such as genetic algo-
rithms or simulated annealing, even though there is no single best performing heuristic for
every optimization problem [33, 7, 41]. For this reason, we decide to take another, more ver-
satile, approach that can be used with any optimization heuristic: resampling [2] [13] [37] [36]
which is one of the most popular method in this category. We focus on it in this paper as
there is no single best performing heuristic for every optimization problem [42], as demon-
strated in some of our previous works [33], and we aim to improve noise reduction methods
that allow switching heuristics depending on the context and optimization use-case.

3.4 Resampling techniques

Resampling consists in adding a “resampling filter” by using a set logical rule to select which
parametrization to reevaluate, as shown in figure 1. Its goal is to reduce the standard de-
viation of the mean of an objective value in order to augment the knowledge of the impact
of the parameter on the performance. Resampling is a trade-off between having a better
knowledge of the space and wasting some computing times on re-evaluation. Many strate-
gies exist in order to efficiently reevaluate a parametrization, and we present here two of
the most popular: simple and dynamic resampling using SEDR (Standard Error Dynamic
Resampling).

Fig. 1. Schematic representation of resampling algorithms

Simple resampling Simple resampling consists in evaluating for a fixed number of times
the fitness value of the selected parametrization [13], regardless of the parametrization and
its fitness. In our case, it consists in launching a fixed number of times the application and
the tuned system with the same selected parametrization. Its main drawbacks is its lack of
adaptivity to the noise.

Dynamic resampling Because the need for resampling is often not homogeneously dis-
tributed throughout the search space [36] (especially for shared and distributed systems),
dynamic resampling methods that consider the performance variance around each data
point have been introduced. Among the most popular, Standard Error Dynamic Resam-
pling (SEDR) [10] adapts the number of samples to the noise strength measured at each
parametrization by using a different number of evaluations nθ for each one. The parametriza-
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tion is re-evaluated until the 95% confidence interval around the mean is below a fixed
threshold τse.
SEDR has proven its efficiency in theoretical [10] and practical problems [38] where the
fitness value is not taken into account whenever setting a confidence interval threshold and
require the same certainty regardless of the performance value. However, when working with
real-systems, especially for applications which can take a long time to run, the length of the
confidence interval should take into account the application’s performance. Because of this,
the authors in [32] suggest the definition of an interval width proportional to the currently
measured mean for this parametrization, and it is this version of SEDR resampling that will
be the basis for our EVADyR algorithm.

4 The EvaDyr algorithm: improving resampling methods
Existing resampling methods have proven to be efficient but still present several drawbacks,
because:
1. Resampling can take too many iterations on a single parametrization, causing

a waste of resources, because methods based on noise values can become focused on
a particular parametrization with large deviation, even if the noise is temporary (data
backup, unusual traffic on the system,..). This variation is already included in [16].

2. Dependence on hyperparameters: The success of dynamic and static resampling
methods depends greatly on their hyperparameters (the number of resamples for simple
resampling and the interval confidence width for dynamic resampling). If the threshold
is set too high, no resampling will occur, and if it is too low, excessive resampling will
occur, hindering exploration of the parametric space.

3. No comparison with already tested parametrization: Resampling does not con-
sider the comparison between the current parametrization’s fitness and the previously
tested ones. This can lead to resampling slow parametrizations multiple times, slowing
the convergence process and wasting the systems’ resource.

To address these limitations, we suggest the EVADyR algorithm (Efficient VAlue Aware
Dynamic Resampling), with several improvements:

Setting a limit to the number of resamples We add a floor limit N to the al-
lowed number of resamples on a given parametrization. The number of resamples nθ for
parametrization θ is thus located between 2 (because each parametrization is resampled at
least twice in order to measure the noise on this data point) and N . We set for the experi-
ments the maximum number of resamples per parametrization to 10% of the total maximum
allowed budget.

Dynamic confidence intervals Another improvement is the removal of the dependence
on the hyperparameter threshold. To do so, we make the size of the confidence interval in-
versely proportional to the number of elapsed steps and use a bounded decreasing exponential
to reduce the ratio of the confidence interval at each step. We also make it proportional to
the mean measured for this parametrization, to consider the fact that the required precision
on the mean estimator is dependent on the value of the mean.
The required confidence around the mean becomes smaller as the number of iterations raises,
as we verify:

ci_width(θ) = 2× 1.96× σ̂(θ)√
jθ

≤ FC(jθ)× µ̂(θ) = max(0.99jθ , 0.1)× µ̂(θ)

This ensures that at the beginning of the optimization process, the algorithm is more lax
about the precision of the true performance value to test many different parametrization,
ensuring a satisfactory exploration of the parametric space. However, at the end of the opti-
mization process, it is more precise about the knowledge we have about the parametrization
ensuring an adequate exploitation of already known parametrizations.

Performance based resampling filter The last change we suggest is to introduce a
dynamic filtering component before performing the resampling. Its goal is to filter the most
promising parametrizations before submitting them to the resampling which reduces its time
cost. The filtering process runs as follow:

1. Each time the heuristic suggests a new parametrization, it is evaluated at least twice
2. If the median of the related performance is inferior to a certain ratio of the current

median, move to the next step, otherwise move to step 4
3. Keep this parametrization and submit it to the resampling process.
4. Discard this unpromising parametrization, go back to step 1 if the budget is not empty.
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The ratio of the median used in step 2 can either be a fixed value or can be computed
dynamically as a decreasing function of the number of elapsed iterations, similarly to dynamic
interval definition. As the optimization progresses, this filter ensures that the algorithm is
more and more strict about the quality of the resampled solutions, so that last iterations are
not wasted on parametrization that are not promising. As the optimization process draws
to an end, we make sure that we do not waste any of the remaining resources.

5 Evaluation of EVADyR’s performance
To evaluate the relevance of noise reduction and compare EVADyR to the state-of-the-
art on real-life test case, we perform the tuning on a notoriously noisy and highly shared
environment by tuning an I/O accelerator, aimed at reducing I/O contention on large scale
HPC systems. This I/O accelerator, called the Small Read Optimizer (SRO) is a dynamic
data preload strategy that prefetches frequently accessed file chunks into the memory of
the compute node. It detects repeatedly accessed zones in a file and loads the entire zone
into memory. This method takes into account both temporal and spatial factors, making it
more effective than the Linux read-ahead strategy, which only loads one zone at a time. The
behavior of the software can be greatly impacted by the four positive and discrete dimensions
in its parametric space [33] [32].

5.1 Interference generation

To validate the relevance of our algorithm and compare it to state of the art, we run an
I/O heavy benchmark performing pseudo-random read accesses, in a noisy setting created
by performing concurrent accesses on the file read by the benchmark. This type of direct
interference is common when running applications with different concurrent nodes that re-
quire using the same data, which is common in shared systems [25]. It creates an intense,
localized noise, that affects periodically and negatively the system’s performance.

Tuned application and potential auto-tuning improvement An I/O intensive
application was selected that performs 4k operations on a 500GB file with 500 hotspots of
width 50MB. The hotspots have 10000 random accesses before moving on to the next file
zone. This access pattern is common in the case of applications accessing different zones of
a data file (such as in a 3D model), performing many random accesses within a zone if it’s
considered interesting, before moving on to the next zone.
The benchmark runs on a single compute node. It consists in an Intel(R) Xeon(R) CPU
E5-2650 0 @ 2.00GHz with 16 physical cores (32 logical cores), bi-socket, and 82 GB of
DDR4-DRAM. The back-end parallel filesystem is a Lustre bay of 40TB. The storage sys-
tem is isolated from the rest of the users in order to have a fine control over the generated
noise and ensure the precision of our study.
To determine the optimal parameters of the accelerator for the application to use as the
ground truth for comparison in a noiseless settings, auto-tuning experiments were run 20
times using Bayesian Optimization on isolated nodes and storage systems to eliminate inter-
ference. The maximum number of iterations is set to 100 and the optimization process stops
if there is less than 5% improvement in the optimum over 15 iterations.
The collected statistical estimators over the 20 noiseless experiments show that all optimiza-
tion runs converge towards the same optimal performance and the average potential tuning
improvement, corresponding to the distance to the default parametrization, is located around
75.33%, with a standard error of 1.15%. The retained best performance, used as ground truth
for the optimum performance of the application, is taken to be the average value of the best
performance over all 15 experiments: 8.88 seconds, for an average improvement of 75.33%.

Noise generation methodology Noise is introduced by running parallel applications
on other computing nodes that perform random operations on the same data file. Three nodes
are used, with two nodes performing write operations and one performing read operations,
corresponding to concurrent random accesses (reads or writes) across the input data file.
The elapsed time between the arrival of each interference is defined as the time interval
between the beginning and the end of the concurrent noise application and is expressed in
seconds. Three different noise frequencies were tested, selected to match a certain frequency
of arrival relative to the duration of the I/O benchmark with default parameters. We denote
the experiments as SRO.n, n being the noise arrival time. For example, SRO.60 will refer to
the SRO experiment with interference coming every 60 seconds.
The impact of noise on the constant default parametrization is shown in figure 2. The noise
profile varies depending on the frequency of arrival. At 60 seconds, the noise is constant, with
each run translated to a higher value. At 120 seconds, the noise is less constant but the value
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of the application does not return to its original value between runs, creating a challenging
environment for the optimizer. At 300 seconds, a Cauchy-type noise is observed, with a
run taking longer when hit by the noise but returning to the original value between runs.
This test environment provides different types of challenges for the optimizer to validate its
relevance in dealing with constant noise (60 seconds arrival), unstable noise (120 seconds
arrival), and impulse-type noise (300 seconds arrival).

Fig. 2. Impact of noise on constant parametrization

Tested methods The black-box optimization heuristic is SMBO, using Gaussian Pro-
cesses as the regression method and Expected Improvement as the acquisition function. The
initialization method uses LHS, the number of initialization runs is set to 10. The maximum
number of optimization runs is set to 100, resulting in a maximum total number of iterations
of 110. The stop criterion stops the experiment automatically when there is less than a 5%
improvement over the last 15 iterations. Each optimization process is repeated 5 times to
average some of its random behavior.
The EVADyR algorithm is compared to static resampling (testing 3 and 5 resamples) and
SEDR (using an interval width of 10% and 30% of the mean), as well as in the absence of
any noise reduction strategy. As one of the major advantage of our methods is the absence
of hyperparameters, we do not test different hyperparameters values for our solution.
All the code used to run the experiment is bundled in the SHAMan optimization frame-
work, fully available as an Open-Source framework [1], and our experiments are thus fully
reproducible.

5.2 Evaluation metrics
To evaluate the relevance of each optimization heuristic, we compute the different metrics
described in table 1.

Table 1. Evaluation metrics for noisy optimization

Name Abbreviation Description
Distance to optimum parametriza-
tion

AvgDistOpt Difference between the average of
the found parametrization to the
best time on average

Improvement compared to the de-
fault parametrization

ImprovDefault Difference between the average of
the found parametrization to the
average performance found for the
default parametrization

Total duration Duration Total duration of the experiment
as the sum of the execution times
at each iteration

The first metric AvgDistOpt is computed by measuring the distance between the average
performance corresponding to the found parametrization and the optimum. This metric
corresponds to measuring the asymptotic quality of the optimizer. It consists in running 15
times the parametrization found in the noisy case on the noiseless cluster and computing the
mean. The metric ImprovementDefault corresponds to the distance between the asymptotic
value of the parametrization returned by the tuner and the average performance measured
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at the default parametrization. It represents the interest of using an auto-tuner rather than
simply using the default parametrization.
The third metrics Duration reflect the time taken by the optimization experiment before the
automatic stop criterion stops it in terms of elapsed time. There is a trade-off between the
convergence speed and the quality of the optimization, as the more we perform evaluations
and resampling, the more we gain insight on the system’s behavior, but the more expensive
resources are spent. We are thus looking for an equilibrium between having a solution close
to the optimum and minimizing the resources cost.

6 Results and discussion
6.1 On the importance of noise reduction for tuning noisy systems

The values of the different metrics for the experiments when using Bayesian Optimization
without any noise reduction technique are presented in table 2.

Table 2. Optimization results without noise reduction

Experiment ID Avg Dist Opt (%) Improv. Default (%) Duration (s)
SRO.60 75.54 56.70 1200.98
SRO.120 319.92 -3.58 1079.57
SRO.300 66.25 58.99 827.03

These experiments show that stochasticity makes the auto-tuner ineffective without noise
reduction, resulting in wasted time and resources: in the case of SRO.120, the parametrization
returned by the optimization process performs worse than the default parametrization, and
in the case of SRO.60 and SRO.300 an improvement is observed compared to the default
parametrization of respectively 56.70% and 58.99%, but nothing as high as the 75% that
can be expected. The experiments show that the noise makes the optimization problem
more difficult, even in the case of lower frequency noise, such as SRO.300, and affects the
quality of the optimizer, causing the stop criterion to be reached and the optimization to be
stopped, as can be seen by looking at the convergence speed in table 2. The noise impact on
the regression model and the acquisition function is also noted as a reason for the decreased
optimization results.

6.2 Using state of the art’s algorithms

Impact of static resampling The metrics computed for the different number of re-
samples in the case of static resampling are available in table 3. The results of using static
resampling show improvement in the quality of optimization performed by the auto-tuner
compared to not using any noise reduction. For every experiment, there is a number of re-
samples that improves significantly the performance of the tuner when compared to not using
any resampling process in terms of distance to the ground truth. In the case of the less noisy
experiment SRO.300, it even comes close to the optimum and the maximum observed po-
tential improvement. However, the optimization process is slowed down by the re-evaluation
of parametrizations that are not very impacted by noise, which are re-evaluated the same
number of times as others that are more subject to noise. The experiments confirm the
drawbacks of using static resampling, as it is hard to find the right exploration-exploitation
trade-off and some iterations are wasted on parametrization with low noise.

Table 3. Metrics on static resampling

Resamp. Exp. Avg DistOpt (%) Improv. Default (%) Duration (s)
3 SRO.60 23.57 69.52 2430.698

SRO.120 30.92 67.71 1411.23
SRO.300 38.65 65.80 1211.79

5 SRO.60 15.98 71.39 1946.672
SRO.120 27.37 68.58 1843.915
SRO.300 2.84 74.63 1632.083
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Impact of dynamic resampling Dynamic resampling does not show any benefits com-
pared to static resampling and in some cases performs worse than without using any noise
reduction strategy, as shown in figure 4. The reason behind this is the difficulty of finding
the right parametrization of the algorithm depending on the noise setting. Optimization tra-
jectories show in the case of a 10% interval width that the parametrization can be resampled
too much or too little depending on the frequency of the noise. In the case of a 30% interval
width, the resampling interval is too large and the algorithm does not have enough data to
have a precise estimation of the performance function. These results highlight the advantage
of dynamic resampling over static resampling in the case of regular Cauchy noise and confirm
some of the results found in the state of the art.

Table 4. Metrics on dynamic resampling

Width (%) Exp. Avg Dist Opt (%) Improv. Default (%) Duration (s)
10% SRO.60 53.99 62.02 4304.41

SRO.120 112.40 47.61 3131.82
SRO.300 28.21 68.37 1620.60

30% SRO.60 309.31 -0.96 2240.62
SRO.120 308.15 -0.68 1994.496
SRO.300 205.76 24.58 2014.72

6.3 Using EVaDyR
The values of the metrics computed for the experiments using the EVADyR algorithm with all
the improvements suggested in section 4 are available in table 5. Using dynamic intervals and
bounded dynamic resampling combines the benefits of both dynamic and static resampling.
It eliminates the need for selecting a specific hyperparameter for the algorithm and adjusts
the resampling rate to the requirements of the noisy setting. This leads to a significant
improvement in the distance to the optimum compared to standard dynamic resampling:
it results in a decrease of the distance from 53.99% to 8.91% for SRO.60, from 112.40% to
5.12% for SRO.120 and from 28.21% to 2.39% for SRO.300. This is reflected as well in the
improvement compared to the default parametrization, which is above 73%.

Table 5. Metrics value using EVaDyR

Exp. Avg Dist Opt (%) Improv. Default (%) Duration (s)
SRO.60 5.81 73.90 2045.52
SRO.120 4.27 74.28 1556.82
SRO.300 2.57 74.70 1311.26

In terms of distance to the ground truth, adding a resampling filter allows to find results
very close to the ground truth optimum, which brings a strong improvement compared to the
default parametrization. Even in the case of the most noisy optimization problem SRO.60,
the performance measured at the returned parametrization is only 5.81% away from the
ground truth, with an absolute difference of 0.5 seconds, reaching almost the full optimization
potential of the auto-tuner. In the case of SRO.120, the performance measured at the returned
parametrization is 4.27% away from the optimum, corresponding to a 0.36 seconds difference
between the ground truth and the found performance. For SRO.300, the returned performance
is 2.57% away, for an absolute difference of 0.15 seconds. Overall experiments, we find that
the distance to the optimum is very small and almost negligible to users.
The most notable advantage of adding a resampling filter to dynamic bounded intervals is
the improvement of the convergence speed, by preventing the evaluation of uninteresting
parametrizations. This leads to a reduction in the number of iterations and total duration
of the experiment, as we observe a time gain of 22% for SRO.60, 16% for SRO.120, 14% for
SRO.300.

6.4 Summary of results
The results summary of using EVADyR algorithm compared to static resampling and SEDR,
as well as not using any noise reduction strategy are available in table 6. They show that
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EVADyR outperforms the state-of-the-art algorithms in terms of distance to the optimum
and improvement from the default parametrization: static resampling is outperformed by
72.6% and dynamic resampling by 93.5%. The same improvement is seen when looking at
the distance of the turned optimum from the default parametrization. EVADyR also provides
a significant improvement in convergence quality, with a 97.46% improvement compared to
not using any noise reduction. EVADyR thus both improves the convergence property of
noise reduction algorithms and removes the need for hyperparameters, primarily by adding
bounded dynamic interval resampling to the tuning process.
Another important result of our study is the importance of noise reduction: when not using
any, black-box optimization is unable to perform the tuning in a noisy environment, as the re-
turned parametrization brings little to no improvement compared to the default parametriza-
tion. EVADyR thus improves the convergence quality of the auto-tuner by 97.46% rather
than when not taking the noise into account. In terms of convergence speed and experiment
duration, the results show a time gain in terms of experiment duration compared to the
state-of-the-art, because of the added resampling decision filter. Indeed, compared to static
resampling, EVADyR brings a time gain of 9.38 %, and compared to dynamic resampling,
EVADyR brings a time gain of 45.76 %.

Table 6. Comparison of our solution to the state of the art in terms of:

None Static Dynamic EVADyr
Distance to the
ground truth (%)

153.90 15.39 64.86 4.21

Improvement to
default (%)

37.37 71.53 59.33 73.88

Experiment dura-
tion (s)

1035.33 1807.55 3018.94 1637.86

7 Conclusion
In conclusion, this paper discusses the impact of noisy interference on the performance of
black-box optimization auto-tuners. We prove that the noise cannot be neglected in pro-
duction systems, as it significantly impacts the performance of the optimizer. To increase
resilience, we suggest a new resampling technique called EVADyR and show that it improves
convergence by 93.5% and reduces experiment duration by 45.76% compared to state of the
art dynamic resampling. We also emphasize the importance of using noise reduction strate-
gies in the case of highly shared systems, as we found a 97.46% increase in the optimum
performance.
Planned improvement of this work consists in testing noise with a random time of arrival
rather than the fixed tested intervals. This would allow to study the behavior of the noise
reduction resampling algorithms when faced with more uncertainty in terms of noise arrival.
Further works also include the comparison of our results to heuristic-specific noise resilient
Bayesian Optimization, by using acquisition functions tailored for stochastic optimization,
such as Noisy Expected Improvement, Augmented Expected Improvement and Expected Quan-
tile Improvement.
-–
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Abstract. The Subgraph Isomorphism Enumeration (SIE) problem requires discovering all
the embeddings of a pattern (or query) subgraph in a given data graph. The problem is
NP-complete, and numerous exact heuristic algorithms have been proposed to speed up the
execution of the problem. Based on the observation that no heuristic is the fastest for all
pattern and data graph pairs, we design a metaheuristic for per-instance algorithm selection
to determine the fastest heuristic for each graph pair. We hypothesise that the connections
and properties of vertices in the graph pair are indicative of the best-performing heuristic
algorithm. As such, we design a Machine Learning (ML)-based metaheuristic algorithm and
investigate how well various types of graph features and ML algorithms predict performance.
Our best-performing metaheuristic improves the execution speed of the SIE problem by up
to 1.54 times across 8 data graphs compared to any single heuristic algorithm. The analysis
furthermore identifies remaining challenges unique to specific data graphs in the SIE problem.

1 Introduction

Graphs are ubiquitous in computer science. Data from various domains, such as astronomy,
bioinformatics, and social and computer networks, are often represented as graphs. Graph analytics
performs analysis of such graph representations. The Subgraph Isomorphism Enumeration (SIE)
problem is widely used in graph analytics, including in graph-based database systems, anomaly
detection, subcircuit identification, astrophysics, etc. The SIE problem involves discovering all
embeddings of a given pattern (or query) graph in an associated data graph. Although polynomial-
time solutions for special cases of the SIE problem are known [6], the problem is NP-complete in
general, making it computationally intensive. However, several proposed algorithms [2, 3, 8, 16, 4,
9, 11], called heuristics, have used characteristics of the graph (e.g., labels, degree, regions, etc.) to
speed up the execution by pruning the exhaustive search space.

An open challenge in the design of metaheuristic solutions to the SIE problem, as with many
other NP-complete problems [10, 20, 14], is that different heuristics perform faster on different
problem instances. While some heuristics are, on average, faster than others over a number
of problem instances, none is consistently the fastest. In this work, we aim to ameliorate this
problem by designing a metaheuristic algorithm that identifies, for a particular problem instance,
an appropriate heuristic that minimises execution time.

Metaheuristic algorithms for per-instance heuristic selection using Machine Learning (ML)
are promising to speedup NP-complete problems [18, 12, 13, 20, 19]. The application of ML to
metaheuristic design, however, is faced with several challenges. A plethora of machine learning
algorithms exist, and there is little knowledge available in the literature on what machine learning
algorithms are effective for this task. Moreover, machine learning algorithms predict on the basis of
extracted features, where the set of features must be chosen to be predictive of the desired outcome,
in this case identifying the fastest heuristic for a given instance. Often, features are specific to the
problem, e.g., the SIE problem has categorical labels on vertices, whereas the Travelling Salesman
Problem has edge weights. As such, graph features are often specific to the problem, and we perform
a thorough study of different graph features. Our main contributions are:

1. Feature selection: We investigate three types of features for each pattern graph in each
dataset, namely (summary) Graph Features (GF), Label Features (LF) and Graphlet Features
(GLF). To the best of our knowledge, this is the first study that uses GLF for per-instance
algorithm selection. We observe that applying GLF results in better performance than GF but
need to be applied in conjunction with LF.
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2. Metaheuristic Approach: We propose a metaheuristic system using multiple ML algorithms
individually to choose the predicted fastest heuristic algorithm for any given pattern graph in
a dataset. We analyse the use of both a Random Forest and a voting-based ensemble technique
for developing a high-level metaheuristic strategy for the per-instance algorithm selection task.
Experimental evaluation of eight data graphs and seven heuristics shows that our proposed
metaheuristic approach achieves a speedup of up to 1.54 times over any static heuristic.

The remainder of the paper is organised as follows. Section 2 defines the SIE problem and
discusses related works in the literature. Section 3 motivates the work through the analysis of
collected data. Section 4 discusses the methodology in our proposed approach in the context of the
feature selection, experimental setup, and evaluation metric. Section 5 discusses the experimental
evaluation. Section 6 concludes the paper.

2 Preliminaries and related works

Definition Given a graph G = (V,E) and a set of labels, A, α : V → A and β : E → A are two
labelling functions that assign labels to vertices and edges, respectively, of G. Let Gd = (Vd, Ed)
and Gp = (Vp, Ep) be two graphs. The Subgraph Isomorphism Enumeration (SIE) problem is
to find an injective mapping, M : Vp → Vd, while preserving edge adjacency. If vertex u ∈ Gp is
mapped to u′ ∈ Gd, then α(u) = α(u′). Additionally, if v ∈ Gp is mapped to v′ ∈ Gd and there
exists (u, v) ∈ Ep, then (u′, v′) ∈ Ep and β((u, v)) = β((u′, v′)).

u0

u1 u2

u3

v1 v2 v3 v4 v5 v6 v7

v8 v9 v10 v11 v12 v13 v14

v0

Fig. 1: Dashed lines showing a mapping corresponding to a subgraph isomorphism embedding
between a pattern graph (left) and a data graph (right). The colours indicate the vertex labels.

Fig. 1 shows two graphs. The smaller pattern graph is shown on the left, and the larger data
graph is shown on the right. A mapping corresponding to a subgraph isomorphism is {(u0, v0),
(u1, v4), (u2, v5), (u3, v12)} and is shown in the figure using dashed lines. Another valid mapping
is {(u0, v0), (u1, v4), (u2, v3), (u3, v10)}. There is no other valid mapping between the vertices of
the two graphs. An SIE search algorithm would enumerate both mappings.

Multiple studies have applied nature-inspired algorithms to develop metaheuristic strategies for
the SIE problem. However, such algorithms are usually not the best approach towards developing
a metaheuristic for exact search. Most of the nature-inspired algorithms have shown positive
performance in finding approximate solutions to the SIE problem but failed to find exact solutions.
For example, Farhani et al. [7] used genetic algorithms iteratively to improve local searches by
perturbing a solution matrix. However, experimental results have shown that it does not achieve
an exact match. Yun et al. [21] used a strategy based on harmony search to find approximate
subgraphs in graphs with up to 150 nodes. The approach succeeded in finding optimal solutions in
small pattern graphs; however, it failed when the graphs grew in size.

The application of ML in developing metaheuristic algorithms was studied by Talbi [18], who
classified its usage into three categories, one of which is to use it as a high-level metaheuristic
to select a heuristic from a portfolio of heuristics. This is the approach that has been taken
in this study. Karimi et al. [12] used the terminology meta-learning to describe the ML-based
metaheuristics that are used for per-instance algorithm selection and divides the process into two
stages: meta-data extraction and meta-model creation.

Kerschke et al. [13] surveyed the application of ML-based metaheuristics for various problems,
including SAT, AI Planning, and TSP. They have emphasized three characteristics essential for
meta-data extraction, i.e., feature selection: (i) Features should be informative and interpretable,



ML4SIE 3

(ii) features should be easily computable, and (iii) features should be generally applicable to all
input cases. These characteristics have been considered in the feature selection of this study.

SATzilla [20] was one of the pioneering studies that used ML for per-instance algorithm
selection for the Satisfiablity (SAT) problem. Tornede et al. [19] studied the application of various
ensemble methods to develop a metaheuristic, which they tested on the SAT problem by comparing
it against ML models and an ORACLE algorithm. This study takes a similar approach toward
improving the runtime of the SIE problem, albeit with a larger number of features and datasets.

3 Motivation

For runtime data collection, seven heuristics, specifically CECI [2], CFL [3], DPiso [8], QuickSI [16],
RI [4], TurboISO [9], and VF2++ [11], were used through the open-source In-Memory Subgraph
Matching (IMSM) [17] codebase to collect runtime data on eight different datasets, namely DBLP,
EU2005, HPRD, HUMAN, PATENTS, WORDNET, YEAST and YOUTUBE. Each dataset contains one data
graph and 1800 pattern graphs. We performed the SIE search for all the 1800 pattern graphs in
each of the eight datasets using all seven heuristics with a timeout of 30 minutes. Table 1 provides
an overview of the data graphs in each dataset.

Dataset Vertex Count Edge Count Mean Degree Label Count

DBLP 317080 1049866 6.622 15

EU2005 862664 16138468 37.415 40

HPRD 9460 34998 7.399 307

HUMAN 4674 86282 36.92 44

PATENTS 3774768 16518947 8.752 20

WORDNET 76853 120399 3.133 5

YEAST 3112 12519 8.046 71

YOUTUBE 1134890 2987624 5.265 25

Table 1: Overview of data graphs

Fig. 2: Count of pattern graphs that completed execution within the specified timeout

At the end of the 30 min timeout, all 1800 pattern graphs in the HPRD dataset had completed
execution using all seven heuristics. However, many pattern graphs in the other datasets did not
complete execution within the timeout. Fig. 2 shows the count of pattern graphs for each dataset in
which all the heuristics completed the SIE search successfully. For further evaluation, we consider
only the pattern graphs that had completed execution on all heuristics. Fig. 3 shows the mean
runtime of the different heuristic algorithms on the considered pattern graphs in the eight datasets.

Fig. 4 shows the count of pattern graphs in each dataset in which each of the heuristics showed
the fastest runtime execution. We can observe that the sum of the count for each dataset exceeds
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Fig. 3: Mean runtime of the seven different heuristic algorithms on the eight datasets

the total number of pattern graphs in the dataset. For example, the sum of the fastest execution
run for each of the heuristics in the HPRD dataset is 3366, despite the dataset having only 1800
pattern graphs. This is because, in a single pattern graph, multiple heuristics, when measured with
millisecond-scale granularity, might have the same fastest runtime.

Fig. 4: Count of fastest execution by different heuristics

Additionally, it can be observed that the heuristic with the fastest mean runtime in a dataset
is not necessarily the fastest algorithm in most pattern graphs. For example, we can observe in
Fig. 3 that in the HPRD dataset, the DPiso algorithm has the fastest mean execution time, followed
by CFL and TSO. However, Fig. 4 shows that TSO (1131) has the fastest execution in the highest
number of pattern graphs, followed by CFL (901) and CECI (843). The DPiso heuristic, which has
the fastest mean execution time, ranks fourth in the count (233) of the pattern graphs in which it
has the fastest execution time. Similar observations can be made in other datasets.

A hypothetical metaheuristic algorithm that would always select the fastest heuristic (or one of
the multiple fastest heuristics) for each pattern graph in a dataset would result in a faster execution
than using any single heuristic statically for all pattern graphs. We call such a hypothetical
metaheuristic the ORACLE algorithm. Fig. 5 shows the mean runtime of the ORACLE algorithm
on the eight datasets and compares it with the fastest heuristic for each dataset.

In this study, we are motivated to approximate the ORACLE algorithm, i.e., we propose a
metaheuristic algorithm that would predict and select the fastest heuristic for any given pattern
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Fig. 5: Runtime comparison of the ORACLE algorithm (TO) and the fastest heuristic (TFH) shown
in linear (left) and logarithmic (right) scale.

graph in a dataset. In ML terminology, we want to perform multiclass classification using the
features of a given pattern graph. Such a task involves predicting one output class (i.e., heuristic)
from the target set (i.e., set of all heuristics). Thus, despite a pattern graph having potentially
multiple heuristics showing the fastest execution time, only one of them can be chosen as the
output. If any pattern graph has multiple fastest heuristics, the heuristic with the worst mean
runtime in the dataset has been chosen as the target. This ensures that the heuristics that have
shown degraded performance in the overall datasets are favoured whenever they have shown the
best performance, thereby enabling the balancing of the datasets. This balancing prevents the
fastest heuristic in the overall dataset from dominating the target set, thereby preventing the ML
algorithms from becoming biased toward the faster heuristics. Fig. 6 shows the distribution of the
count of the pattern graphs for which each heuristic was chosen as the target.

Fig. 6: Distribution of the count of the pattern graphs for each heuristic in the target set

4 Our Proposed Approach

4.1 Feature Extraction

Multiple feature selection techniques have been used for each pattern graph in each of the eight
datasets. These are described as follows.
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Vertex Count Edge Count Diameter

Girth Mean Degree Maximum Degree

Minimum Degree Min. Eigenvalue Centrality Density

Is graph bipartite? Unique Label Count Max. Label Count

Mean Label Count - Label Count Std. Dev.

Table 2: Graph Features (GF) retained for each pattern graph after feature selection

Graph Features (GF): Initially, for each pattern graph, we extracted 25 features using
the igraph [5] software package. We performed feature reduction manually to address
the curse of dimensionality problem. The features Maximum Eigenvector Centrality, Is

graph connected?, and Minimum Label were eliminated based on variance-based thresholding.
Furthermore, Radius, Mean Path Length, Mean Eccentricity, Maximum Eccentricity and
Minimum Eccentricity were eliminated because of high correlation (≥ 0.9) with Diameter.
Additionally, Edge Connectivity and Vertex Connectivity were discarded because of high
correlation with Minimum Degree, and Mean Eigenvector Centrality because of high correlation
with Density. Only features with a linear correlation with a retained feature have been eliminated.
For example, Density has been retained despite being a nonlinear combination of Vertex Count

and Edge Count. The features retained after manual feature selection are listed in Table 2.

u0

u1 u2

u3

1 1 2 0

u0

u1 u2

u3

1 1 1 1

Fig. 7: Pattern graphs and their associated LF feature vectors

Label Features (LF): The Label Feature (LF) vector for each pattern graph is a vector of size
equal to the count of unique labels in the associated data graph. For each pattern graph, each
column in the LF vector records the count of the occurenoccurrence of the corresponding label in
the pattern graph. Fig. 7 shows two pattern graphs and their associated LF vectors, given the data
graph in Fig. 1. Unlike the Graph Features (GF), the length of the LF vectors varies across the
different datasets and equals the count of the unique labels in the data graphs (given in Table 1),
i.e., the LF vector ranges from 5 in WORDNET to 307 in HPRD. As discussed previously, a large feature
count gives rise to the curse of dimensionality problem. Therefore, we used Principal Component
Analysis (PCA) with the LF vectors to reduce the dimensions of the feature vectors. Fig. 8 shows
the explained variance ratio and the count of selected principal components for each dataset. The
count of the selected principal components is the final length of the LF vector for each dataset.

Graphlet Features (GLF): Graphlets (or motifs) are recurring subgraph patterns that occur with
a statistically significant frequency within a large graph. Counting the number of embeddings of
the graphlets in a graph enables the creation of a profile of the underlying local subgraph structure
of the graph. Two graphs with similar Graph Features (GF) will have different Graphlet Features
(GLF) if their underlying structures are different. In this study, we used the Parallel Graphlet

Decomposition (PGD) Library toolkit [1] to extract the count of the occurrences of seventeen
graphlets, shown in Fig. 9. All the extracted graphlets, including the 4-clique (K4), are planar
graphs, and their count can be efficiently computed in linear time.
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Fig. 8: Components selected after dimensionality reduction using PCA on Label Features (LF)
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Fig. 9: The seventeen Graphlet Features (GLF) extracted for each pattern graph

4.2 Experimental Setup

We used a single core of an AMD EPYC 7702 64-Core Processor with an allotment of 4 GB RAM
and a runtime threshold of 30 minutes to run one instance of the SIE search. We used a High-
Performance Computing (HPC) infrastructure to run sequential execution of the seven heuristic
algorithms on each of the 1800 pattern graphs in all eight datasets in parallel in separate cores.

For extraction of the Graph Features (GF) and Label Features (LF), we used the igraph software
package. Additionally, we used the PGD library toolkit to extract the Graphlet Features (GLF).
As discussed, redundant and low-variance features were removed from GF using manual analysis.
We used PCA to perform dimensionality reduction on the LF using the elbow method.

Finally, we used fifteen ML algorithms, including tree-based methods (Decision Tree, Random
Forest, Extra Trees, AdaBoost, Gradient Boost), feed-forward neural network (with 1, 2, and 3
hidden layers), Stochastic Gradient Descent, k-Nearest Neighbours, Näıve Bayes, and Support
Vector Machine (with Radial Basis Function, Linear, Sigmoid and Polynomial kernels) to predict
the fastest heuristic for each pattern graph in the eight datasets. We have chosen algorithms across
all popular paradigms (e.g., tree-based, probabilistic, lazy, etc.) of ML algorithms. Additionally,
we used 10-fold cross-validation to evaluate the performance of the ML models. We exhaustively
used all combinations of the three feature types for the prediction. We used the Scikit-learn [15]
library to perform the PCA and the ML classification (training and inferring) tasks.
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Fig. 10: Speedup on the PATENTS dataset using all modes

4.3 Evaluation Metric

Since the objective of this study is to determine whether ML algorithms can be used to improve the
runtime of solving the SIE problem using a per-instance algorithm selection strategy, the traditional
metrics used to evaluate the performance of classification (viz. accuracy, confusion matrix and its
derivatives, etc.) are not sufficient for the evaluation in this study. For example, the traditional
metrics would not be able to account for the correct prediction when the ML algorithm predicts
a heuristic that is not the target for any particular pattern graph but instead predicts another
heuristic that is as fast as the target. Therefore, we define a metric to evaluate the performance of
our proposed metaheuristic system. The metric is described below.

Effective Speedup (SE): This is the speedup obtained using the metaheuristic compared to the
fastest heuristic algorithm. If TFH is the execution time of the fastest heuristic on the dataset, and
TML is the execution time using the ML algorithm, then the relative speedup, SE , is defined as -

SE =
TFH

TML

The metric SE = 1 when the metaheuristic would have a performance equal to the fastest
heuristic algorithm. If the metaheuristic algorithm is slower than the fastest heuristic, then SE

would have a value of less than one. The faster the metaheuristic algorithm is compared to the
fastest heuristic, the higher would be the value of SE . It must be noted that no metaheuristic
algorithm can be faster than the ORACLE algorithm, and therefore, the SE is constrained by the
runtime of the oracle. In other words, we have the highest value of SE when TML = TO, where
TO is the runtime of the ORACLE algorithm.

5 Experimental Evaluation

The performance of the various ML algorithms using all combinations of the feature types to predict
the fastest heuristic on the PATENTS dataset is shown in Fig. 10. We observe that the performance
of all ML algorithms improves when GF features are discarded. In the PATENTS dataset, the best
performances are observed when LF features are used in isolation or in combination with GLF

features. We observe similar performance characteristics in all other datasets.
Fig. 11 shows the performance of the different ML algorithms on the eight datasets using only LF

and GLF features. We see that in the WORDNET dataset, none of the ML algorithms show a speedup.
Also, only Random Forest (RF) shows a speedup in the YEAST dataset. Nevertheless, in all other
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Fig. 11: Effective Speedup on the different datasets using only LF and GLF features. The dashed
line indicates the baseline speedup using the fastest heuristic.

datasets, multiple ML algorithms show speedup using only the LF and GLF feature combination.
Fig. 12 shows the performance of the different ML algorithms when all three feature types (GF, LF
and GLF) are used on the eight datasets. We see that apart from the DBLP dataset, all other datasets
exhibit degraded performance when we use all the features. This corroborates our observations in
Fig. 10 that the inclusion of GF features results in performance degradation.

Fig. 12: Speedup on the different datasets using ALL (GF, LF and GLF) features

We observe that the Label Features (LF) are the most crucial feature types for all ML algorithms.
All the heuristics considered in this study can be divided into three stages. In the first stage, all the
heuristic algorithms use LF at the core for filtering out incompatible vertices in the data graph for
each vertex in the pattern graph, thereby reducing the search space. Each heuristic has a different
mechanism to perform the filtering. Therefore, it fits that the label distributions given by the LF

features are essential for ML algorithms. In fact, the WORDNET dataset, which has shown the worst
performance, also has the lowest number of labels.

We observe that the GLF features have shown higher performance than applying GF features.
Pattern graphs with similar GF features can have very different internal structures. The GF features
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cannot capture the details of the internal structures of the pattern graphs. On the other hand, the
graphlet (or motif) count captured using GLF features can describe the structure of subgraphs of
the pattern graphs. Thus, used along with LF features, the GLF features provide a better description
of the structure of the pattern graphs for the ML algorithms to make more accurate predictions.

In all datasets, except WORDNET and YEAST, multiple ML algorithms have shown a runtime
speedup. However, we observe that no ML algorithm has shown a consistent speedup across all
datasets, with only RF showing an improved performance in a majority of datasets.

Fig. 13: Gini Feature Importance using Random Forest

Given that RF has shown improved performance in almost all the datasets, we propose a näıve
metaheuristic algorithm that uses only RF for per-instance algorithm selection. As discussed, we
consider only the LF and GLF features while discarding the GF features because of the degradation
in performance that it introduces. The dimensionality reduction performed through PCA ensures
that only LF features with significant importance are selected. Fig. 13 shows the Gini importance
of the different GLF features when performing the classification using RF.

While RF has shown improved performance in all datasets, except WORDNET, we can see that the
GLF features used for the construction of the decision trees in the RF have different importance for
different datasets. This variation in feature importance indicates that the RF algorithm performs
the prediction task differently for each dataset, i.e., based on the structure of the data and pattern
graphs, different structural information is used by the different RF models for different datasets.
Thus, a generic RF that generalises over multiple datasets would not be as efficient as a per-dataset
RF. Each dataset in, say, a database of data graphs would require a separate RF to be constructed.

While we proposed the näıve metaheuristic algorithm using RF because of its improved
performance in almost all the datasets, we observe that there are other ML algorithms that
have shown better performance in various datasets. Therefore, we hypothesise that a high-level
metaheuristic algorithm that uses multiple low-level ML algorithms would perform better than
using a single ML algorithm (RF, in this case). We use a voting-based ensemble technique using
the output of all fifteen ML algorithms as our metaheuristic algorithm. If MLi is the output of
the ith ML algorithm, then the output, ŷ, of the metaheuristic algorithm is given as -

ŷ =
15

mode
i→1

[MLi]

Fig. 14 shows the speedup on the different datasets using the metaheuristic algorithm developed
with the voting-based ensemble method. The metaheuristic algorithm using the voting-based
ensemble method shows a trend similar as seen in Fig. 11. This is expected as the former is
essentially an amalgamation of the latter. Datasets like PATENTS, where most of the ML algorithms
have shown a high runtime speedup, have shown increased performance using the metaheuristic
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Fig. 14: Metaheuristic algorithm using voting-based ensemble method

algorithm, whereas datasets like WORDNET, in which all the ML algorithms have shown a degraded
performance, have shown a degraded performance. In the YEAST dataset, where only RF has shown
a positive speedup, the voting-based ensemble method has shown a degradation in performance
because of the degraded performance of all the other ML algorithms.

6 Conclusion

Studies in the literature have applied ML-based metaheuristic techniques to several NP-complete
problems like SAT, TSP, AI planning, etc. In this study, we focus on the Subgraph Isomorphism
Enumeration (SIE) problem that finds application in a wide variety of domains, including, but
not limited to, pattern finding and graph database query resolution. While most of the studies
on the other problems in the literature have focused on using only GF and LF features, we have
extended the feature types in our study by additionally using the GLF features, resulting in better
performance using GLF features than GF features. Moreover, we have evaluated our metaheuristic
technique using eight different datasets, each containing one data graph and 1800 pattern graphs.
This allowed us to analyse the performance of our technique in a broader range of datasets.

We observed that metaheuristic techniques, either using a näıve single-ML RF algorithm or a
voting-based ensemble method, can help improve SIE search performance compared to statically
using any single heuristic algorithm. While this is not universally true, as can be seen from the
degraded performance in the WORDNET and YEAST datasets, the application of the metaheuristic
techniques improved the runtime performance on all the other datasets.

In this study, we are constrained by the limited count of the available pattern graphs in general
and completely executed pattern graphs in particular. ML models require a large number of data
instances to fit the training data with high generalisability while avoiding overfitting. In each of
our eight datasets, we have 1800 pattern graphs, but not all of them completed execution within
the given runtime threshold. For example, in the WORDNET dataset, only 207 pattern graphs had
finished execution using all seven heuristics. Increasing the runtime threshold can help generate
more data instances, but because of being NP-complete, some of the problem instances can require
a copious amount of time, making it unfeasible to increase the threshold beyond a certain limit.

Contrary to the studies in the literature, we found that the metaheuristic technique does not
always result in improved performance. This might be because we have evaluated our technique
in a broader range of datasets. Further investigations should be performed into problems like SAT
and TSP to assess if metaheuristic techniques result in degraded performance in some datasets if
a higher number of datasets are considered.
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Abstract. The marine predators algorithm (MPA) is a recently developed metaheuristic
algorithm that is inspired by the foraging behavior of marine predators. It has been widely
used to solve real-life optimization problems. However, it frequently gets trapped in a local
optima since it is unable to have a diversified population in the early stages of optimization.
To overcome the premature convergence problem of MPA, this paper introduces an improved
version of the marine predators algorithm named as opposition-based local escaping marine
predators algorithm (OLMPA). There are two ways in which the improvement is carried out.
The first improvement uses opposition based learning (OBL) assures the diversity of solu-
tions in the search space. The second improvement uses the local escaping operation, which
creates new solutions that replace the worst solutions to estimate the best solution. These
enhancements are designed to address the imbalance between exploration and exploitation.
The proposed OLMPA is tested on 23 benchmark functions. The numerical and statistical
experimental results show that the proposed algorithm overperformed classical MPA.

Keywords: Nature Inspired Optimization, Metaheuristics, Marine Predators Algorithm,
Local escaping operator, Opposition based learning

1 Introduction

In recent decades, many new meta-heuristic optimization algorithms have been proposed to address
the increasing complexities and challenges of real-world problems. These stochastic approaches
utilize random operators to globalize the search space and avoid local optima in order to estimate
the best solutions for a range of optimization problems. However, while they offer several benefits,
such as being gradient-free, adaptable, and problem-independent, these strategies do not guarantee
a global solution will be found once convergence is achieved. Metaheuristic optimization algorithms
rely on two key strategies - exploration/diversification and exploitation/intensification - to enhance
their performance. Exploration is used to investigate the entire search space, while exploitation is
used to improve quality locally. Achieving optimal performance for an algorithm involves striking
a balance between these two strategies, which is typically accomplished through a combination of
different operators and processes that vary between population-based algorithms.

The existing literature on these algorithms can be broadly classified into three categories:
improving existing algorithms, hybridizing different algorithms, and developing new algorithms.
Each of these categories is active, and there is a significant body of research and applications in
each one. However, as per the No Free Lunch theorem [1], there is no single optimization technique
that can solve all optimization problems, and hence researchers do not rely on a single algorithm.
One such attempt occurred when the marine predators algorithm was introduced in [2]. Numerous
researchers have experimented with various approaches to improve the search performance of MPA.
In order to accomplish this, numerous variants of MPA have been developed. Some of them are as
follow: A modified marine predators algorithm is proposed by hybridization of MPA and teaching-
learning-based algorithm (TLMPA) in [3], the multi-objective MPA (MOMPA) is formulated in [5],
a logistic opposition-based learning (LOBL) and self-adaptive updating methods are introduced
into a new version of marine predators algorithm (MMPA) in [6], an improved marine predators
algorithm (ODMPA) has been developed in [7], four new versions are developed of multi-objective
MPA in [8],

In order to more effectively address present problems or find answers to brand-new ones, we
must modify current algorithms or propose brand-new ones. This is what prompted us to propose
OLMPA, a new optimization technique. A review work on newly developed nature inspired algo-
rithms is done in [14]. The MPA is chosen as a study because it is a newly proposed algorithm
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and it attracted our attention because of its simplicity. Therefore, we tried to improve it by incor-
porating opposition based learning and local escaping operator. The present study contributes the
following:

– Opposition based learning is used to assure the diversity of solutions in the search space.
– Local escaping operator is used which creates new solutions that replace the worst solutions

to estimate the best solution.
– Developed algorithm is compared with classical MPA on 23 well known classical benchmark

functions.

The article is structured as follows: Section 2 provides a brief overview of the classical MPA.
Section 3 describes the proposed OLMPA. The performance of the OLMPA algorithm is evaluated
on a set of benchmark functions in Section 4, and the results are discussed. Finally, Section 5
summarizes the conclusions of the paper and presents recommendations for future research.

2 Marine Predators Algorithm

The marine predators algorithm is a novel nature-inspired meta-heuristic algorithm that draws its
inspiration from different tactics employed by predators to boost the rate at which they seek for
prey. Predators search for their food, as well as the prey. MPA algorithm based on this concept is
designed in [11].

Similarly to many other meta-heuristic algorithms, the MPA is also a population based-optimization
algorithm which is designed to solve nonlinear optimization problems of the type

Min/Maxf(P ), f : Rd → R ,where P ∈ Rd

subject to Pmin ≤ P ≤ Pmax

where d represents the dimension of the problem. The initial population P0 is generated using the
random initialization approach. This can be formulated as follows:

P0 = Pmin + rand( Pmax − Pmin) (1)

Where Pmin is the lower bound and Pmax is the upper bound of the problem, and rand in [0,1]
is a uniformly distributed random number. This method controls the behaviour of two groups of
feasible solution candidates, which are represented by the E and P matrices.

E =



P 1
1,1 P 1

1,2 . . . P 1
1,d

P 1
2,1 P 1

2,2 . . . P 1
2,d

...
...

...
...

...
...

...
...

P 1
n,1 P 1

n,2 . . . P 1
n,d

 P =



P1,1 P1,2 . . . P1,d

P2,1 P2,2 . . . P2,d

...
...

...
...

...
...

...
...

Pn,1 Pn,2 . . . Pn,d


P 1 denotes the vector of the top predator, d is the dimension of the problem and n represents

the number of solutions. Pi,j denotes the jth dimension of the ith prey in P matrix. On the basis
of a range of velocity ratios, MPA simulation has three major phases.

Phase-1 In the first phase of the algorithm, the prey moves faster than the predator with a
high-velocity ratio. Prey migrate in a brownian distribution, and the ideal predator approach is to
never move. As a result, when exploration is required during the initial iteration of the process, this
phase is employed. The step size is supposed to be large in the first phase for better exploration.
This stage is denoted mathematically as :

while Iter < 1/3 Itermax

SLi = BR ⊗ ( Ei −BR ⊗ Pi) (2)

Pi = Pi + T ×R⊗ SLi, where i = 1, . . . n
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where brownian motion is shown by the random values called BR , which is based on the normal
distribution. ⊗ shows entry-wise multiplication. The value of T is equal to 0.5. R is a vector of
uniform random numbers in closed interval [0,1].

Phase-2 In the second phase of the algorithm, both predator and prey search for their own food
moving at the same velocity. This phase is also known as the unit velocity ratio phase. Exploration
and exploitation both are happened equally in the second phase of algorithm. As a result, the
population is split evenly in half. Exploration takes place in the first segment, while exploitation
takes place in the second. Exploration is used by prey, while exploitation is used by predators.
Prey moves with levy distribution, while predators move with brownian distribution. This stage is
denoted mathematically as :

while 1/3Itermax < Iter < 2/3Itermax

SLi = LR ⊗ ( Ei − LR ⊗ Pi) (3)

Pi = Pi + T ×R⊗ SLi, where i = 1, . . . n/2

where LR is a lévy distributed random numbers, represents the lévy movement.

SLi = BR ⊗ ( BR ⊗ Ei − Pi) (4)

Pi = Ei + T × CF ⊗ SLi, where i = n/2, . . . n

where CF = (1− Iter/Itermax)
(2Iter/Itermax) is defined as an adaptive parameter to regulate

the predator’s movement’s step size.

Phase-3 In this phase, predator moves faster than the prey with the low-velocity ratio, which
happens in the last phase of the algorithm. The best strategy for predators is to move with the
levy distribution. The mathematical formula for this phase is

while Iter > 2/3 Itermax

SLi = LR ⊗ ( LR ⊗ Ei − Pi) (5)

Pi = Ei + T × CF ⊗ SLi,where i = 1, . . . n

Eddy formulation and FADs’ effect The process of foraging may be affected by the eddy
current formation of fish aggregation( FADs) [11]. So, to prevent trapping into local optima, large
stepsizes are used. The jumping mode is defined as:

Pi =

{
Pi + CF [ Pmin +R⊗ ( Pmax − Pmin) ] ⊗ U when α ≤ FADs

Pi + [ FADs( 1− α) + α] ( Pr1 − Pr2) when α > FADs
(6)

where FADs = .2 shows the probability of FADs effect on the optimization process. U is a
binary vector that contains an array of zeros and ones. α is a uniformly distributed random number
in [0, 1]. Subscripts r1 and r2 stand for the P matrix’s random indexes.

Memory saving in MPA Marine predators are known for their good memory. Therefore, the
current solution and the solution obtained from the previous iteration are compared at the end of
each iteration. The solution with higher fitness is chosen to increase population quality.

3 Proposed opposition-based local escaping marine predators
algorithm (OLMPA)

The proposed algorithm OLMPA has been described in details in this section. The motivation
behind the improvement is stagnation of solution in local optima. To overcome this problem local
escaping operator and opposition based learning is imposed on classical MPA.
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3.1 Opposition based learning

Opposition-based learning (OBL) is inspired by the opposite relationship among entities. The idea
of opposite numbers was introduced in [12]. According to this concept, a solution and its opposite
solution are both used in the search process to search in both directions. Hence, this concept has
the potential to enhance the convergence process. Different types of computing algorithms, like
artificial neural networks, optimization methods, and reinforcement learning, use the concept of
OBL to improve performance.

Consider a point p ∈ [ c,d ] subset of real numbers R, then the opposite of p is denoted by p̂
and defined as p̂ = c+ d− p . where c and d are the lower and upper bound of p respectively. Also,
this concept can be extended from one dimension to multiple dimensions which is defined as

Consider P = ( p1, p2, . . . , pm) ∈ Rm, where Rm is m- dimensional search space. Then opposite

point of P is P̂ = ( p̂1, p̂2, . . . , p̂m) ∈ Rm and defined as p̂i = ai + bi − pi, for i = 1, 2, . . .m, where

lower and upper bounds of pi are ai and bi respectively. Let P ∈ Rm be a feasible point and P̂ is
its opposition point, f( P ) and f( P̂ ) are objective function values at P and P̂ respectively. P is

replaced by P̂ if f( P̂ ) ≤ f( P ) , otherwise P is used for the rest of the generation.

3.2 Local escaping operator

In the MPA process, there is a lack of any inter-dependence of solutions; therefore, there would be
an opportunity to accept solution generated by the external procedures. So, new feasible solution
candidates that are generated by external computational can be injected into the population. This
procedure may help the population be more diverse. Consequently, it may help to lead to the
emergence of better solution conditions.

Let S = {Pbest, Pavg, P
rep
best, P

rep
worst, Prnd} be the set of representative solutions, where Pbest

represent the best solution in current iteration, Pavg represent the average solution candidate,
based on mutual similarities P rep

best and P rep
worst are two candidates that represent the population,

Prnd represent the random solution in the population.
Now, define a matrix

M =



0 dist( P1, P2) . . . dist( P1, Pn)
dist( P2, P1) 0 . . . dist( P2, Pn)

...
...

...
...

...
...

...
...

dist( Pn, P1) dist( Pn, P2) . . . 0

 (7)

where dist() represent the euclidean distance, P rep
best and P rep

worst will be generated by the help of M .
Let Si =

1
n

∑n
j=1 Mi,j , for i = 1, 2, 3 . . . n, P rep

best is the candidate having smallest S and P rep
worst is

the candidate having largest S. Pavg is calculated as Pavg = 1
n

∑n
i=1 Pi. Now, The new candidate

solution Pin is calculated as

Pin = Pbest +N( 0, ( 1− Iter

Itermax
) ) ∗ ( Pbest − Pavg) (8)

where Iter denote the current iterations and Itermax denote the maximum number of iterations
to be performed. N represent the standard deviation of the normal distribution with zero mean.
For more exploration and exploitation Pin, can be modified. for this, generate two candidates Ph1

( 9) and Ph2 ( 10)

Ph1 = Pbest +N( 0, ( 1− Iter

Itermax
) ) ∗ ( Pbest − P rep

best) (9)

Ph2 = Pbest +N( 0, ( 1− Iter

Itermax
) ) ∗ ( Pbest − P rep

worst) (10)
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and a new candidate can also be generated using bounds determined by the P matrix

Prnd = Pmin + rand( Pmax − Pmin) (11)

where rand is vector containing uniformly distributed random numbers between 0 and 1. Prnd is
a random solution, Since Prnd is generated based on the values of the P matrix. Pin is modified
solution based on selected and generated solutions. It only works if the randomly generated num-
ber is smaller than .66. Consider Pin as P 1

in to differentiate the candidates for further analysis.
Modification of P 1

in are obtained consecutive numbers in superscript. Hence

{
P 2
in = rn ∗ P 1

in + ( 1− rn) ∗ Prnd +R, if rand < 5

P 3
in = rn ∗ Pbest + ( 1− rn) ∗ Prnd +R, otherwise

(12)

where rn is a uniform number in [ 0,1] . R is calculated as

R = N( 0, ( 1− Iter

Itermax
) ) ∗ ( Ph1 − Ph2) (13)

In the proposed procedure, candidate solutions generated by LEO [13] are replaced with k worst
solution candidates. The pseudo code of OLMPA is presented in algorithm [1].

Algorithm 1 The OLMPA

Input Itermax: maximum number of Iteration to be performed
n: number of feasible solutions
k: number of solutions replaced by the LEO, k < n Randomly create the population, P
calculates the fitness of each solution
construct Elite matrix by optimal solution
for Iter = 1 to Itermax

if Iter < 1/3 Itermax

Phase-1: P update by Eq( 2)
else if while 1/3 Itermax < Iter < 2/3 Itermax

Phase-2: Update first half P by Eq( 3 )
Update second half P by Eq( 4 )

else if Iter > 2/3Itermax

Phase-3: P update by Eq.( 5)
end

Sort P, Apply opposition-based learning to the first half population.
Marine memory saving: Replace present solutions with better ( Iter -1) solutions.
Apply FADs, Eq.( 6)
Sort P, determine the k worst solutions for the replacement.
Select representative solutions P rep

best and P rep
worst based on Eq. ( 7)

for l=1 to k
Create new solution ( Pin ) based on Pbest and the created Pavg, Eq. ( 8 )
Create solutions Ph1 , Ph2 and Prnd, Eq. ( 9) - Eq. ( 11 )
if rand < 0.66

if rand < 0.5
Create P 2

in, Pin= P 2
in, Eq. ( 12 )

else
Create P 3

in, Pin= P 3
in, Eq. ( 12 )

end
end
Replace the P1 with Pin

end
end
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Table 1: Mean, STD, Max, Min of top predator’s fitness values in 30 runs of MPA, and its proposed
variant OLMPA for Unimodal test functions for 10 dimensions.
Test function [10D] algorithm mean STD max min

F1 MPA 5.29E-30 1.25E-29 6.77E-29 9.49E-33
OLMPA 0.0000 0.0000 0.0000 0.0000

F2 MPA 5.89E-17 6.70E-17 2.63E-16 1.72E-18
OLMPA 2.92E-184 0.0000 8.12E-183 3.76E-208

F3 MPA 2.79E-14 6.10E-14 3.15E-13 4.59E-19
OLMPA 1.55E-312 0.0000 4.67E-311 0.0000

F4 MPA 1.36E-12 1.17E-12 4.36E-12 4.54E-14
OLMPA 1.83E-167 0.0000 5.10E-166 4.28E-194

F5 MPA 1.81E+00 3.70E-01 2.66E+00 1.14E+00
OLMPA 3.44E+00 4.80E-01 4.52E+00 2.26E+00

F6 MPA 1.48E-11 8.53E-12 3.69E-11 1.45E-12
OLMPA 1.21E-12 1.56E-12 6.42E-12 4.09E-18

F7 MPA 7.80E-04 4.77E-04 2.01E-03 8.76E-05
OLMPA 1.80E-04 1.02E-04 3.79E-04 1.87E-05

4 Numerical results and analysis

To benchmark, the performance of the proposed OLMPA algorithm, a variety of test functions [16]
are chosen. Such functions are essential for validating and comparing new optimization techniques.
In this paper, all the experiments are performed on MATLAB 2020b with 4 GB RAM system.

4.1 Benchmark test functions and parameter settings

Based on their properties, the benchmark problems are divided into three categories namely uni-
modal functions, multimodal functions, and fixed-dimension multimodal functions. Because the
unimodal function has just one optimum, these functions can demonstrate diversification while
also accelerating convergence. On the other hand, multimodal functions comprise a large number
of optima, including many local optima and single or multiple global optima. These functions can
be used to verify the proposed algorithm’s ability to avoid local optima. As a result, these functions
are more complex, and they should be capable of avoiding local optima stagnation by promoting
exploration. Out of 23 benchmark functions F1-F7 are unimodal functions and F8-F13 are mul-
timodal functions. Non-scalable fixed-dimensional multimodal functions are depicted by functions
F14-F23.

4.2 Analysis of OLMPA for unimodal functions

The results of unimodal test functions for 10 and 30 dimensions are shown in Tables [1] and [2]
respectively. Unimodal functions have a single global optimum so these functions can be used to
assess exploitation potential. Except for function P5, the average values show significant gains for
the proposed approach. The standard deviations show that the suggested algorithm’s superiority
is stable. It is also clear from the p-values of the Wilcoxon rank sum test, as given in Tables [6] and
[8], that the suggested approach is statistically significant when compared to the classical MPA. It
demonstrates that the suggested opposition-based model and local escaping operator implemented
in OLMPA have the potential to significantly improve MPA exploration and exploitation.

4.3 Analysis of OLMPA for multimodal functions

Table [2] and Table [4] exhibit the results of multimodal test functions for 10 and 30 dimensions,
respectively. Since multimodal functions include a high number of local optima that increase in
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Table 2: Mean, STD, Max, Min of top predator’s fitness values in 30 runs of MPA, and its proposed
variant OLMPA for multimodal test functions for 10 dimensions.

Test function [10D] Method Mean STD Max Min

F8 MPA -3.56E+03 229.4403 -3140.586 -4071.39
OLMPA -3.72E+03 2.31E+02 -3360.76 -4071.39

F9 MPA 3.26E-11 1.78E-10 9.77E-10 0.0000
OLMPA 0.0000 0.0000 0.00E+00 0.0000

F10 MPA 4.68E-15 1.30E-15 7.99E-15 8.88E-16
OLMPA 8.88E-16 0.0000 8.88E-16 8.88E-16

F11 MPA 1.59E-11 8.69E-11 4.76E-10 0.0000
OLMPA 0.0000 0.0000 0.0000 0.0000

F12 MPA 1.01E-11 6.15E-12 2.36E-11 6.21E-13
OLMPA 2.56E-13 3.53E-13 1.40E-12 7.90E-18

F13 MPA 4.39E-11 3.00E-11 1.27E-10 8.72E-12
OLMPA 1.37E-06 7.48E-06 4.10E-05 6.66E-15

Table 3: Mean, STD, Max, Min of top predator’s fitness values in 30 runs of MPA, and its proposed
variant OLMPA for Unimodal test functions for 30 dimensions.
Test function [30D] Method Mean STD Max Min

F1 MPA 7.16E-23 9.28E-23 3.94E-22 3.51E-24
OLMPA 0.0000 0.0000 0.0000 0.0000

F2 MPA 2.02E-13 2.09E-13 9.46E-13 9.65E-16
OLMPA 1.22E-172 0.0000 3.58E-171 2.09E-195

F3 MPA 1.71E-04 3.08E-04 1.47E-03 1.74E-07
OLMPA 3.44E-286 0.0000 1.03E-284 0.0000

F4 MPA 2.93E-09 1.79E-09 6.93E-09 4.26E-10
OLMPA 1.67E-158 9.14E-158 5.01E-157 3.16E-183

F5 MPA 2.53E+01 4.35E-01 2.62E+01 2.43E+01
OLMPA 2.50E+01 5.06E-01 2.62E+01 2.39E+01

F6 MPA 3.82E-08 1.90E-08 1.16E-07 1.07E-08
OLMPA 9.90E-03 3.53E-02 1.55E-01 3.21E-09

F7 MPA 1.15E-03 6.07E-04 2.70E-03 3.38E-04
OLMPA 2.37E-04 1.78E-04 6.59E-04 3.37E-05

number as the size of the dimension increases, they are employed to evaluate an algorithm’s capacity
for exploration. These tasks are capable of identifying the algorithm’s exploratory behavior.

The Wilcoxon rank-sum test p-values in Table [7] and Table [9] demonstrate the significance of
the suggested OLMPA algorithm.

4.4 Analysis of OLMPA for fixed dimensional functions

The table [5] shows the results of 500 iterations of fixed-dimensional test functions. These functions
are also multimodal having fixed dimensions, whereas multimodal functions’ dimensions can vary
based on the demands of the designer. As a result, their exploration behaviour differs from that
of the multimodal functions P8–P13. The outcomes of all these functions for OLMPA and the
original MPA are the same. All these functions show improvement in exploration. The p-values of
the Wilcoxon rank sum test in Table [10] show that the suggested OLMPA method outperforms
the old one.



8

Table 4: Mean, STD, Max, Min of top predator’s fitness values in 30 runs of MPA, and its proposed
variant OLMPA for multimodal test functions for 30 dimensions.
Test function [30D] Method Mean STD Max Min

F8 MPA -9.08E+03 4.61E+02 -8.25E+03 -1.01E+04
OLMPA -9.47E+03 5.39E+02 -8.40E+03 -1.10E+04

F9 MPA 0.0000 0.0000 0.0000 0.0000
OLMPA 0.0000 0.0000 0.0000 0.0000

F10 MPA 1.71E-12 1.85E-12 1.06E-11 2.82E-13
OLMPA 8.88E-16 0.0000 8.88E-16 8.88E-16

F11 MPA 0.0000 0.0000 0.0000 0.0000
OLMPA 0.0000 0.0000 0.0000 0.0000

F12 MPA 2.20E-06 1.03E-05 5.65E-05 1.85E-09
OLMPA 2.33E-04 1.18E-03 6.44E-03 2.46E-10

F13 MPA 8.28E-03 1.09E-02 4.39E-02 2.76E-08
OLMPA 4.09E-01 4.48E-01 1.80E+00 3.69E-05

Table 5: Mean, STD, Max, Min of top predator’s fitness values in 30 runs of MPA, and its proposed
variant OLMPA for fixed dimensional test functions
Test function Method Mean STD Max Min

F14 MPA 9.9800E-01 1.3983E-16 9.9800E-01 9.9800E-01
OLMPA 9.9800E-01 4.1233E-17 9.9800E-01 9.9800E-01

F15 MPA 3.0749E-04 4.6170E-15 3.0749E-04 3.0749E-04
OLMPA 3.9905E-04 2.7940E-04 1.2230E-03 3.0749E-04

F16 MPA -1.0316E+00 4.6100E-16 -1.0316E+00 -1.0316E+00
OLMPA -1.0316E+00 3.5635E-15 -1.0316E+00 -1.0316E+00

F17 MPA 3.9789E-01 6.4496E-15 3.9789E-01 3.9789E-01
OLMPA 3.9789E-01 1.1567E-13 3.9789E-01 3.9789E-01

F18 MPA 3.0000E+00 2.0031E-15 3.0000E+00 3.0000E+00
OLMPA 3.0000E+00 1.2345E-15 3.0000E+00 3.0000E+00

F19 MPA -3.8628E+00 2.4057E-15 -3.8628E+00 -3.8628E+00
OLMPA -3.8628E+00 2.7101E-15 -3.8628E+00 -3.8628E+00

F20 MPA -3.3220E+00 1.6031E-11 -3.3220E+00 -3.3220E+00
OLMPA -3.2744E+00 5.9241E-02 -3.2031E+00 -3.3220E+00

F21 MPA -1.0153E+01 2.8132E-11 -1.0153E+01 -1.0153E+01
OLMPA -1.0153E+01 7.0129E-15 -1.0153E+01 -1.0153E+01

F22 MPA -1.0403E+01 2.7979E-11 -1.0403E+01 -1.0403E+01
OLMPA -1.0403E+01 7.3759E-16 -1.0403E+01 -1.0403E+01

F23 MPA -1.0536E+01 4.7180E-11 -1.0536E+01 -1.0536E+01
OLMPA -1.0536E+01 2.1377E-15 -1.0536E+01 -1.0536E+01

4.5 Convergence analysis

To analyse the convergence behaviour of a few functions from unimodal, multimodal, and fixed
dimensions, their convergence graphs are drawn in figures [1-3]. The number of generations is
displayed on the X-axes, and the best objective function values are determined on the Y-axes for
each function.

The figure [1] depicts the convergence graph of six unimodal functions (P1, P2, P3, P4, P5,
P7). This unimodal functions’ convergence graph demonstrates that the proposed OLMPA exhibits
convergence behaviour beginning with the first generation and increasing significantly as the num-
ber of iterations increases. Compared to the classical MPA, convergence is occurring significantly
more rapidly. Because unimodal functions can attest to a function’s exploitation and convergence
behavior, the significant increases in the convergence of these functions clearly demonstrate that
proposed OLMPA outperforms over the MPA.

The figure [2] depicts the convergence behavior of four multimodal functions (P9, P10, P11,
P12) and the figure [3] shows the convergence behaviour of four fixed-dimension test functions
(P15, P21, P22, P23). Because multimodal test functions have several local optima, an algorithm
should be able to traverse the search region quickly such that it avoids local optima and tends to the
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Fig. 1: Convergence of six unimodal test functions P1, P2, P3, P4, P5, and P7 using MPA and
OLMPA

global optimal solution. The convergence graphs for three multimodal functions demonstrate that
the proposed OLMPA converges substantially more quickly in the initial generations. The figure [3]
shows the convergence behaviour of fixed dimensional functions and shows that the exploration rate
of OLMPA is better than the classical MPA. This investigation demonstrates that the proposed
OLMPA algorithm is quite capable of locating global optima.

4.6 Statistical analysis

The non-parametric pair-wise Wilcoxon test was used to assess the statistical validity of the MPA
and OLMPA results. The test is carried out at 5 percent level of significance. Based on the p-values
obtained from the Wilcoxon rank-sum test, the proposed OLMPA is worse than the original MPA
for ( p-value > 0.1) , slightly worse than the original MPA for ( p-value ≤ 0.1) , equal to the
original MPA for ( p-value = 0.1) , considerably better than the original MPA for ( p-value < 0.05)
, and high significant than the original MPA for ( p-value ≤ 0.01) , the grades are awarded as ”C”,
”C+”, ”B”, ”A”, and ”A+” respectively. Tables [6 - 10] contain the results of p-value calculations.
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Fig. 2: Convergence of four multi-modal test functions P9, P10, P11, and P12 using MPA and
OLMPA

Table 6: Statistical results on unimodal test functions by Wilcoxon Rank sum for 10 dimensions.
Test function [10D] p-value(Wilcoxon test) Conclusion

F1 1.21E-12 A+
F2 3.02E-11 A+
F3 4.11E-12 A+
F4 3.02E-11 A+
F5 4.50E-11 A+
F6 1.61E-10 A+
F7 4.31E-08 A+

Table 7: Statistical results on multi-modal test functions by Wilcoxon Rank sum for 10 dimensions

Test function [10D] p-value (Wilcoxon test) Conclusion

F8 4.23E-03 A+
F9 3.34E-01 A+
F10 3.60E-13 A+
F11 0.04192 A
F12 5.49E-11 A+
F13 4.80E-07 A+

Table 8: Statistical results on unimodal test functions by Wilcoxon Rank sum for 30 dimensions.
Test function [30D] p-value (Wilcoxon test) Conclusion

F1 1.21E-12 A+
F2 1.21E-12 A+
F3 2.95E-11 A+
F4 3.02E-11 A+
F5 1.11E-03 A+
F6 3.83E-05 A+
F7 9.76E-10 A+
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Fig. 3: Convergence of four fixed dimensional test functions P15, P21, P22, and P23 using MPA
and OLMPA

Table 9: Statistical results on multi-modal test functions by Wilcoxon Rank sum for 30 dimensions.

Test function [30D] p-value(Wilcoxon test) Conclusion

F8 4.03E-03 A+
F9 NaN NaN
F10 1.21E-12 A+
F11 NaN NaN
F12 2.28E-05 A+
F13 4.62E-10 A+

Table 10: Statistical results on fixed dimensional test functions by Wilcoxon Rank sum.
Test function p-value(Wilcoxon test) Conclusion

F14 NaN NaN
F15 2.47E-08 A+
F16 2.15E-02 A
F17 5.87E-02 C+
F18 5.36E-03 A
F19 NaN NaN
F20 1.78E-01 C
F21 1.21E-12 A+
F22 1.21E-12 A+
F23 1.21E-12 A+

5 Conclusion

This research offers a modified version of the previously established marine predators algorithm,
named OLMPA. The local escaping operator and opposition-based learning are used for this pur-
pose on the classical MPA. These operators are capable of improving macro search in the early
stages of development while simultaneously providing balance for micro search in the latter stages
of generations. The effective combination of these operators accelerates convergence and ensures
the achievement of a global optimum. The proposed OLMPA’s performance is validated against
standard benchmark functions consisting of unimodal functions, multimodal functions, and fixed-
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dimensional multimodal functions issues of varying dimensions and complexity levels. The obtained
results are validated using the Wilcoxon rank-sum test and analysed with the help of convergence
curves. To test the robustness of the proposed OLMPA algorithm, a good set of 23 common bench-
mark problems are used. The comparison between the proposed OLMPA and the classical MPA
demonstrates that OLMPA is really competitive with the classical MPA. This proposed algorithm
offers a new direction for improving search capabilities so that real-world application problems can
be solved.

In the coming decades, OLMPA may be used to solve a wide range of optimization problems,
such as constrained optimization problems, integer programming problems, and so on.
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1 Introduction

In recent years, there is a great interest in automating the process of searching for neural network
topology. This problem is called Neural Architecture Search (NAS), which can be seen as a 3-gear
mechanism: the search space, the error estimation and the search strategy.

The search space defines what kind of neural architectures can be reached, and it can be divided
into three types:

– A search space restricted to sequential models. These models consist of consecutive layers
(L0.L1, ..., Ln), where layer Li receives as input the output of layer Li−1

– A search space with more complex architectures where the input of the i-th layer is defined by
the function gi(L0, ..., Li−1). Examples of this search space are the Residual Networks [4] or
the DenseNets [5].

– The search space of block-based architectures [12], [11]. These are based on a design pattern
that consists of the consecutive repetition of a set of layers called blocks.

To guide the selected strategy throughout the search space, we need a metric to help us. The
simplest way is to evaluate the error obtained in the validation set, however, due to the long
computation times required, alternative methods are being searched for, such as: reducing the
training set [12], reducing the number of epochs [10, 12], using less filters [7, 12] or using lower
resolution images [2].

Different kind of search strategies have been proposed in the literature mainly based on rein-
forcement learning with a reinforce policy [9], a proximal policy optimization [12] or Q-learning
[1]. Other strategies based on evolutionary algorithms have been also proposed with different types
of genetic operators, such as using selection by tournament [7, 8], eliminating the worst individual
in each generation [8], eliminating the oldest individual [7], or using Lamarkian inheritance [3] for
the offspring generation.

In this paper, we propose an improved version of the NSGA-Net algorithm [6], which is a multi-
objective genetic algorithm for the NAS problem. One of the drawbacks is the limited diversity that
can be generated by the original crossover operator, which generates only one offspring keeping the
common genomes, and leaving the rest randomly. In order to avoid this limitation, we proposed a
new 2-point crossover restricting the possible cutoff points only to the block limits.

The rest of the paper is organized as follows. In the next section, some preliminary results are
shown on the well-known CIFAR-10 dataset. Finally, some remarks and future works are presented
in the conclusions section.

2 Experiments

In this section, we present the empirical results to show the efficacy of the proposed operators
for the NSGA-Net algorithm to automate the NAS process on the CIFAR-10 benchmark. Two
objectives were considered to guide our NSGA-Net based algorithm: the classification error on
the validation set and the computational complexity measured as the number of floating point
operations (FLOPs) needed to execute the forward pass of the neural network. The CIFAR-10
dataset was considered for the classification task, splitting the original training set into our training
(80%) and validation set (20%) for the neural architecture search. The original testing set was only
used to obtain the test accuracy of the final models.



2 Eloy Bedia-Garćıa and Enrique Domı́nguez

Regarding to the genetic parameters, the population was randomly initialized with size fixed to
40 during the 20 generations for exploration and 10 generations for exploitation. The coding of the
genomes consists in a sequence of 3 blocks, each containing a maximum of 4 nodes. The training of
the neural networks is carried out for 25 epochs, with a learning rate of 0.025 descending according
to the cosine annealing scheme, and a batch size of 128.

(a) Objectives space distribution (b) Evolution of the population accuracy

Fig. 1: NSGA-Net vs LimitPhase on CIFAR-10

Figure 1 shows the comparative result between the original NSGA-Net and our proposed algo-
rithm on the CIFAR-10 dataset. The distribution of the solutions provided by both algorithms is
shown in figure 1a, where our proposal (NSGA-LimitPhase) presents a higher accuracy concentra-
tion in values around 90%, although with greater complexity (FLOPs). This information is also
reflected in figure 1b, where the evolution of the accuracy of the population models of NSGA-
LimitPhase presents a better performance. Additionally, in this figure we can see the deterioration
of the NSGA-Net population throughout the generations, which it is accentuated at the end. How-
ever, our proposal presents accuracies more stable at high values with a smooth downward trend
at the end.

3 Conclusions

In this work, we have proposed the use of a new crossover to improve the NSGA-Net algorithm
for the NAS problem. Experimental results show a better accuracy distribution in the objectives
space, and a better accuracy evolution on the CIFAR-10 dataset. These results are very promising
for the treatment of other datasets/benchmarks in order to design a good algorithm for solving
the NAS problem. Further works include both the application of the proposed algorithm to other
datasets and the comparison to other state-of-the-art algorithms for the NAS problem.
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1 Introduction

The heuristic numerical optimization methods, such as evolutionary algorithms (EA) and swarm
intelligence (SI) approaches are an important part of the computational intelligence (CI) field, as
they are often used for solving real-world problems, and serve as parts of other algorithms. However,
their applicability is often limited due to the large number of parameter values that should be
set in order to achieve desirable performance on a problem at hand. Hence, the development of
parameter adaptation mechanisms and algorithms, which are less sensitive to parameter settings,
is an important research direction.

The differential evolution (DE) is currently one of the most popular evolutionary algorithms for
numerical optimization due to simplicity and high efficiency. However, since the original proposal
in [8], it is known that DE is highly sensitive to parameter settings, thus a huge number of studies
is aimed at proposing novel parameter adaptation schemes for scaling factor F and crossover rate
Cr, as well as population size [11]. One of the most influential studies [6] proposed the success-
history based adaptive DE (SHADE) algorithm, variations of which are used in numerous prize-
winning algorithms. Most attempts to improve SHADE’s parameter adaptation have not resulted
in significant breakthrough, also some development is clearly observed [1].

In this study a new strategy is proposed for scaling factor F adaptation in DE. It is based
on the success rate value, i.e. the number of successful solutions generated within one generation
divided by total population size, and is inspired by the findings presented in [2], where the genetic
programming was applied to design parameter adaptation schemes. In this study these ideas are
further developed, and applied to a recently proposed L-NTADE algorithm [3]. It is shown that
on two sets of benchmark functions, used in Congress on Evolutionary Computation 2017 [4] and
2022 [5], the modified algorithm is capable of achieving much better results, and competing with
the best proposed algorithms, while using the same set of parameters.

The paper is organized as follows: section 2 provides the related work and describes parameter
adaptation schemes in differential evolution, section 3 contains the description the proposed success
rate based method, section 4 contains the experimental setup and results, as well as their discussion,
and section 5 concludes the paper.

2 Related Work: Differential Evolution

Differential Evolution is a population-based heuristic numerical optimization method, proposed by
Storn and Price in [8]. The simplicity of its algorithmic scheme, small number of control parameters
and high efficiency for local and global optimization have made it popular among researchers [10].
The name of the algorithm comes from the mutation operator, where new solutions are generated
using difference between solutions in the population.

The initialization creates population, i.e. a set of NP individuals xi = (xi,1, xi,2, ..., xi,D),
where D is the problem dimension. In most studies random generation of solutions with uniform
distribution is used:

S =
{
xi ∈ RD|xi = (xi,1, xi,2, ..., xi,D) : xi,j ∈ [xlb,j , xub,j ]

}
(1)

where xlb,j and xub,j are the lower and upper bounds for variable j.
After initialization the mutation step is performed. Nowadays the most popular mutation

scheme is called current-to-pbest, proposed in JADE algorithm [9]:

vi,j = xi,j + F × (xpbest,j − xi,j) + F × (xr1,j − xr2,j), (2)
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where vi is the mutant vector, F is the scaling factor parameter, pbest is the index of one of
the pb ∗ 100% best individuals, r1 and r2 are uniformly generated random indexes from [1, NP ],
i = 1, 2, ...NP , j = 1, 2, ...D. Indexes r1, r2 and pbest are generated to be different from each other
and index i.

After mutation the trial vector is generated using crossover, which combines the trial vector xi

and mutant vector vi with probability Cr. Most studies use binomial crossover:

ui,j =

{
vi,j , if rand(0, 1) < Cr or j = jrand

xi,j , otherwise
. (3)

where jrand is a random index in range [1, D], required to make sure that at least one component
is taken from mutant vector - otherwise the ui could be the same as xi.

After the new solution ui is generated, the bound constraint handling method is applied and the
target function value f(ui) is calculated. Next, the selection (replacement) operation is performed
as follows:

xi =

{
ui, if f(ui) ≤ f(xi)

xi, if f(ui) > f(xi)
. (4)

The selection in DE replaces the target individual xi with a new one only if it is better in terms
of objective function.

The DE has only three main parameters: F , Cr and NP , but the algorithm is highly sensitive
to their settings. This lead to many studies, which proposed parameter adaptation schemes, mainly
for scaling factor and crossover rate. One of the most important is the SHADE algorithm [6], where
success-history based adaptation (SHA) was proposed, being a further development of JADE. In
SHADE there are H memory cells, each containing a pair of values (MF,h,MCr,h), h = 1, 2, ...H.
These values are used to generate new parameters in the following way:{

F = randc(MF,k, 0.1)

Cr = randn(MCr,k, 0.1)
. (5)

where randc(l, s) is a Cauchy distributed random value, and randn(l, s) is a normally distributed
random value, l is the location parameter, s is the scale parameter. For generation one of the
memory cells with index k is randomly chosen, k ∈ [1, H]. If the generated value F > 1, then it
is set to F = 1, and if F < 0, it is generated again until it falls within (0, 1]. The Cr value is
truncated to [0, 1].

The sampled F and Cr values are used to create new trial solution, and if this solution is
successful, i.e. better than target vector, then F and Cr are stored into arrays SF and SCr. In
addition, the improvement value is stored: S∆f = f(ui)−f(xi). At the end of the generation these
arrays are used to update the one of the H memory cells using weighted Lehmer mean:

meanwL =

∑|S|
j=1 wjS

pm
j∑|S|

j=1 wjS
pm
j

, (6)

where wj =
S∆fj∑|S|

k=1 S∆fk

, S∆fj = |f(uj)− f(xj)| and S is either SCr or SF , pm is set to 2. The new

memory cell value is calculated in the following way:{
M t+1

F,k = 0.5(M t
F,k +mean(wL,F ))

M t+1
CR,k = 0.5(M t

Cr,k +mean(wL,Cr))
, (7)

where t is the generation number.
The SHADE algorithm has received significant attention, starting with the L-SHADE [7], which

proposed the Linear Population Size Reduction to control the third main parameter NP :

NP g = round(
NPmin −NPmax

NFEmax
NFE) +NPmax (8)

where g is the generation number, NPmin is usually set to 4, NFE and NFEmax are the current
and total number of function evaluations, NPmax is the initial population size.
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Other studies have proposed specific rules for parameter adaptation in jSO [12], rank-based
selective pressure in L-SHADE-RSP [13], hybrids with CMA-ES algorithm in LSHADE-SPACMA
[15], non-linear population size reduction and adaptive archive usage in NL-SHADE-RSP [14], and
many others. However, most of them relied on a mostly similar main scheme with one population,
external archive and success-history based adaptation for F and Cr.

Recently the L-NTADE algorithm was proposed [2], in which two populations are used, one
with the newest individuals xnew

i , i = 1, . . . , Nmax, and the other - with the top individuals
xtop
i , i = 1, . . . , NPmax, i.e best known from the whole search process. During initialization, both

populations are set to have the same random solutions. Inspired by the unbounded DE [16], where
all generated individuals are stored and used to generate new solutions, the L-NTADE uses specific
mutation strategy, which is derived from current-to-pbest and uses both populations and called
r-new-to-ptop/n/t:

vi,j = xnew
r1,j + F × (xtop

pbest,j − xnew
i,j ) + F × (xnew

r2,j − xtop
r3,j) (9)

where r1, r2 and r3 are randomly chosen indexes from corresponding populations, the terms r-new
stands for the choice of a random individual from the newest population as a target solution, ptop
for the choice of one of the pb% best individuals from the top population.

The crossover step in L-NTADE is unchanged, however, the selection step is different. Once
a new solution ui is generated by crossover, it is compared to the randomly chosen for mutation
with index r1:

xnc =

{
ui, if f(ui) ≤ f(xnew

r1 )

xnc, if f(ui) > f(xnew
r1 )

. (10)

The main idea of an update here is similar: if the trial vector is better than the target, it should
be saved, however, the new solutions are always saved to the newest population, but with different
index nc, which is iterated between 1 and NPcur, where NPcur is the current population size,
controlled by Linear Population Size Reduction, applied to both newest and top populations.
Such selection mechanism means that the newest population is continuously updated, and better
solutions could be replaced by worse ones, but only if there is some improvement compared to
other solution.

In addition, all newly generated solutions are stored in a temporary pool xtemp, and at the
end of a generation the top population is updated by sorting a joined set of xtemp and xtop and
selecting the best NPcur solutions. This means that xtop always contains the best known solutions
so far.

L-NTADE also uses exponential rank-based selection was implemented by selecting an individ-
ual depending on its fitness in a sorted array, with the ranks assigned as follows:

ranki = efrac−kp·iNP , (11)

where kp is the parameter controlling the pressure. The selective pressure is applied when gener-
ating the r2 index, i.e. for the newest population.

The L-NTADE algorithm was shown to be a highly competitive algorithm, and will be used as
a baseline approach in this study.

3 Proposed approach: success rate based scaling factor adaptation

The development of new parameter adaptation schemes is a challenging task, as it requires new
ideas on how to connect some of the statistical characteristics of an algorithm during its run with
the parameter values that should be used. In a recent study on automatic design of parameter
adaptation strategies in [2], the genetic programming (GP) was used to generate equations, which
would combine input variables, such as current spent resource, current success rate, as well as values
generated by SHA to set the location parameter for sampling F and Cr values. The performed
experiments have shown that GP is capable of designing efficient parameter adaptation schemes
which are different from those created by researchers. One of the important results of that study
was that GP solutions relied on the success rate, i.e. the number of successful solutions divided by
the total population size.
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Based on this insight revealed by GP, here the following parameter adaptation technique is
proposed. First, the success rate SR is calculated as follows:

SR =
NS

NPcur
(12)

where NS is the number of successful solutions, equal to |S|, i.e. cardinality of set SF or SCr, used
in success history adaptation. The success rate SR is then used to set the mean scaling factor value
MF :

MF = SR
1
c (13)

where c is the parameter value. Such equation is used, as in [2] the values generated by GP were
usually larger than success rate. The MF value is further used to sample scaling factor values F
for mutation:

F = randc(MF, 0.1) (14)

In other words, the proposed method could be simplified to a single equation:

F = randc((
NS

NPcur
)

1
c , 0.1) (15)

Figure 1 shows the different MF values, which will be used for F sampling with different c param-
eter values.
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Fig. 1. Mean MF for scaling factor sampling with different c parameter values

As can be seen from Figure 1, with increased c the MF values are shifted up, and small success
rates result in relatively high MF values, i.e. for example SR = 0.05 may lead to MF close to 0.5.

The proposed method will be further referred to as success rate based adaptation (SRA),
and applied to the L-NTADE algorithm, resulting in L-NTRDE approach (Linear population size
reduction Newest and Top success Rate adaptive Differential Evolution). The rest of the algorithm
stays unchanged, only F generation is replaced. Same as in SHADE, if F > 1, it is set to 1, and if
F < 0, it is sampled again. For Cr the success history based adaptation is used.

4 Experimental Setup and Results

To evaluate the performance of the proposed SRA approach, two sets of benchmark functions
were used, namely the Congress on Evolutionary Computation competition on single-objective
optimization from 2017 [4] and 2022 [5]. These benchmarks are used as they have different set-
tings, i.e. different number of problems, different dimensions and different computational resource
limitations.
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The CEC 2017 contains 30 test functions for dimensions 10D, 30D, 50D and 100D, and the
computational resource is set to NFEmax = 10000D evaluations. In CEC 2022 benchmark there
are 12 test functions, dimensions 10D and 20D, and the resource NFEmax is set to 200000 for
10D, and 1000000 for 20D. For CEC 2017 there are 51 independent runs required to compare
algorithms, and for CEC 2022 - 30 independent runs.

The proposed L-NTRDE algorithm was implemented in C++, compiled with GCC under
Ubuntu 20.04, and ran on an OpenMPI-powered cluster of 8 AMD Ryzen 3700 PRO processors.
The post-processing of the results was performed using Python 3.8.

The following parameters were used for the L-NTRDE algorithm: Nmax = 20D, Nmin = 4,
H = 5, MCr,r = 1, pb = 0.3, selective pressure parameter kp = 3, Lehmer mean parameter
pm = 4. For the L-NTADE the memory cells were set as MF,r = 0.3.

In the first set of experiments the influence of different c parameter values are evaluated, for this
purpose the L-NTRDE is tested with c = 1, 2, 3, 4, 5, 6 and compared to L-NTADE. For comparison
the Mann-Whitney rank sum statistical test with normal approximation and tie-breaking was
applied, the significance level was set to p = 0.01, which corresponds to the threshold Z score of
|2.58| (two-tailed test). Estimating Z-score simplifies the reasoning and estimating the difference
between algorithm variants. Table 1 contains the comparison on CEC 2017 benchmark functions,
in every cell are the number of wins/ties/losses. The values in the brackets represent the total
standard score, i.e., sum of all standard scores of the Mann–Whitney test over all test functions.

Table 1. Comparison of L-NTRDE to L-NTADE with different c parameter values, CEC 2017, Mann–
Whitney tests and total standard score.

Algorithms 10D 30D 50D 100D

L-NTRDE (c = 1) vs 2/10/18 0/8/22 0/4/26 1/2/27
L-NTADE (-105.68) (-192.68) (-218.98) (-219.12)

L-NTRDE (c = 2) vs 6/15/9 3/14/13 4/8/18 5/3/22
L-NTADE (-11.94) (-65.01) (-108.84) (-124.60)

L-NTRDE (c = 3) vs 9/15/6 12/15/3 8/17/5 8/9/13
L-NTADE (22.08) (43.24) (19.67) (-6.39)

L-NTRDE (c = 4) vs 11/14/5 14/15/1 15/11/4 15/11/4
L-NTADE (37.30) (75.39) (69.26) (70.63)

L-NTRDE (c = 5) vs 10/16/4 14/15/1 17/10/3 15/11/4
L-NTADE (44.53) (73.95) (67.77) (65.51)

L-NTRDE (c = 6) vs 11/17/2 9/19/2 13/11/6 11/12/7
L-NTADE (36.40) (48.88) (25.88) (24.52)

As can be seen from Table 1, small c values make L-NTRDE algorithm much worse than
L-NTADE with success history adaptation, however, setting c to 4 or 5 results in significant per-
formance gain, and L-NTRDE becomes better than the baseline algorithm. In particular, with
c = 5 L-NTRDE is capable of outperforming L-NTADE on up to 17 functions, i.e. more than
half of the test functions. Table 2 contains the comparison of L-NTRDE with L-NTADE on the
CEC 2022 benchmark set. Note that the ranking during Mann-Whitney test here takes into con-
sideration not only the final achieved result, but also convergence speed - if the problem is solved
successfully (with 10−8 accuracy), then the number of function evaluations required to achieve this
is recorded. This comparison mechanism was proposed in the CEC 2022 benchmark.

The results in Table 2 show that L-NTRDE is better than L-NTADE on 10D functions in most
cases, however, the performance on 20D functions is worse. However, similar dependence on c can
be observed, i.e. c = 4 appears to be the best setting for this benchmark.

In Tables 3 and 4 the L-NTRDE is compared to alternative approaches on the CEC 2017 and
CEC 2022 benchmark sets, the c parameter is set to 4 in both cases

The results in Table 3 show that L-NTRDE is capable of outperforming all methods in the
comparison, and only LSHADE-SPACMA has similar performance in 100D case. Compared to
other approaches, L-NTRDE is better on most of the test functions.

As for the CEC 2022 results, here L-NTRDE is better than most of the methods in 10D case,
except EA4eigN100 (ranked first), NL-SHADE-LBC (ranked second) and MLS-LSHADE (proposed
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Table 2. Comparison of L-NTRDE to L-NTADE with different c parameter values, CEC 2022, Mann–
Whitney tests and total standard score.

Algorithms 10D 20D

L-NTRDE (c = 1) vs 5/3/4 3/2/7
L-NTADE (11.08) (-22.99)

L-NTRDE (c = 2) vs 6/4/2 3/3/6
L-NTADE (25.53) (-6.99)

L-NTRDE (c = 3) vs 6/4/2 3/5/4
L-NTADE (25.45) (1.07)

L-NTRDE (c = 4) vs 5/5/2 2/6/4
L-NTADE (26.17) (-1.82)

L-NTRDE (c = 5) vs 3/8/1 2/6/4
L-NTADE (13.29) (-10.64)

L-NTRDE (c = 6) vs 2/6/4 2/7/3
L-NTADE (-10.49) (-12.62)

Table 3. Comparison of L-NTRDE to different approaches, CEC 2017, Mann–Whitney tests and total
standard score.

Algorithms 10D 30D 50D 100D

L-NTRDE vs 9/18/3 17/6/7 14/3/13 14/1/15
LSHADE-SPACMA [15] (25.76) (75.97) (17.98) (1.50)

L-NTRDE vs 6/21/3 19/10/1 22/6/2 24/1/5
jSO [12] (7.27) (139.25) (153.40) (147.83)

L-NTRDE vs 3/19/8 16/9/5 18/7/5 22/2/6
EBOwithCMAR [17] (-37.99) (79.00) (110.30) (131.61)

L-NTRDE vs 6/22/2 19/10/1 18/10/2 20/5/5
LSHADE-RSP [21] (18.25) (133.79) (119.75) (108.01)

L-NTRDE vs 13/8/9 24/3/3 29/1/0 29/0/1
NL-SHADE-RSP [14] (20.26) (175.19) (248.78) (236.40)

L-NTRDE vs 6/20/4 24/5/1 28/2/0 27/2/1
NL-SHADE-LBC [22] (2.61) (180.57) (230.02) (220.26)

L-NTRDE vs 11/14/5 14/15/1 15/11/4 15/11/4
L-NTADE [3] (37.30) (75.39) (69.26) (70.63)

Table 4. Comparison of L-NTRDE to different approaches, CEC 2022, Mann–Whitney tests and total
standard score.

Algorithms 10D 20D

L-NTRDE vs 5/3/4 4/5/3
LSHADE-RSP [21] (10.84) (5.59)

L-NTRDE vs 5/4/3 7/4/1
NL-SHADE-RSP [14] (18.28) (42.71)

L-NTRDE vs 0/5/7 6/2/4
NL-SHADE-LBC [22] (-40.59) (2.34)

L-NTRDE vs 2/6/4 5/3/4
EA4eigN100 [18] (-15.49) (5.51)

L-NTRDE vs 3/4/5 6/2/4
NL-SHADE-RSP-MID [19] (-5.98) (17.59)

L-NTRDE vs 8/2/2 10/0/2
APGSK-IMODE [20] (36.86) (52.60)

L-NTRDE vs 4/2/6 4/1/7
MLS-LSHADE [23] (-9.67) (-19.78)

L-NTRDE vs 8/2/2 8/2/2
MadDE [24] (39.05) (43.60)

L-NTRDE vs 5/5/2 2/6/4
L-NTADE [3] (26.17) (-1.82)
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for CEC 2021 benchmark). In 20D case it was outperformed by MLS-LSHADE. However, it should
be noted that L-NTRDE was not tuned for this benchmark, and used the same parameters as for
CEC 2017 benchmark.

For a better understanding of the process of parameter adaptation based on success rate, Figures
2 and 3 shows the graphs of SR and MF values, as well as the average of MF,k values for the
L-NTADE algorithm with the same settings.
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Fig. 2. Process of parameter adaptation in L-NTRDE and L-NTADE, CEC 2017, several selected functions,
30D case

Considering the graphs in Figure 2, it can be observed that the behaviour of success history
adaptation and success rate adaptation is significantly different. In fact, sometimes there are oppo-
site trends. For example, at the beginning usually the values in the memory cells MF generated by
SHA increase, while success rate adaptation decreases the MF value. Moreover, if at some point
during the optimization process SHA values goes down, MF increases, for example at around
200000 function evaluations on F16, around 125000 evaluations on F29 and so on. If the success
rate starts oscillating, this results in larger spread of generated MF values, leading to more diverse
scaling factors F being sampled.

As for the 50D case shown in Figure 3, similar tendencies can be observed, however, there are
cases when both methods have almost the same effect, for example like on F30.

Table 5 contains the mean values achieved by L-NTADE and L-NTRDE on every function of
the CEC 2017 benchmark set, as well as Mann-Whitney tests, ”+” means that L-NTRDE was
better, ”-” means that it was worse, and ”=” denotes a tie.

As can be seen from Table 5, the difference between L-NTADE and L-NTRDE is sometime
quite large, for example on functions 5, 10, and 20.

According to the presented experimental results, the proposed success rate based adaptation
works very different from the baseline approach, used in many algorithms nowadays, i.e. success
history adaptation. The reasons of such efficiency of the proposed algorithm could be the following.
If the success rate is low, this means that the algorithm is probably stuck in a local optimum (or
different parts of the population in different optima). In such situation the scaling factor values
should be sampled with a mean close to 0.5. With the mutation strategy used this means that trial
vectors will be generated in the direction of better pbest solutions, but not very close to them, i.e.
with moderate variation due to the second part of the mutation equation. This means that the
algorithm will focus more on exploration rather than exploitation. Such sampling of F is possible
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Fig. 3. Process of parameter adaptation in L-NTRDE and L-NTADE, CEC 2017, several selected functions,
50D case

Table 5. Comparison of L-NTRDE and L-NTADE on 30 functions, CEC 2017, Mann–Whitney tests

F L-NTADE L-NTRDE MW L-NTADE L-NTRDE MW L-NTADE L-NTRDE MW L-NTADE L-NTRDE MW
1 0.0e+0 0.0e+0 = 0.0e+0 0.0e+0 = 0.0e+0 1.360e-6 - 4.075e-2 6.494e+1 -
2 0.0e+0 0.0e+0 = 0.0e+0 0.0e+0 = 2.024e+4 8.241e+1 = 4.064e+41 9.496e+41 =
3 0.0e+0 0.0e+0 = 0.0e+0 0.0e+0 = 0.0e+0 0.0e+0 = 1.735e+1 4.145e-1 +
4 0.0e+0 0.0e+0 = 4.07e+1 5.774e+1 = 3.839e+1 5.897e+1 - 1.034e+2 2.020e+2 -
5 4.955e+0 1.814e+0 + 9.984e+0 4.897e+0 + 1.450e+1 9.735e+0 + 2.739e+1 2.286e+1 +
6 0.0e+0 0.0e+0 = 0.0e+0 6.709e-10 = 1.175e-9 2.713e-8 - 9.619e-4 1.521e-6 +
7 1.573e+1 1.262e+1 + 4.275e+1 3.547e+1 + 6.591e+1 5.877e+1 + 1.275e+2 1.137e+2 +
8 4.936e+0 1.580e+0 + 9.479e+0 5.384e+0 + 1.570e+1 1.05e+1 + 2.622e+1 2.283e+1 +
9 0.0e+0 0.0e+0 = 0.0e+0 0.0e+0 = 0.0e+0 0.0e+0 = 0.0e+0 0.0e+0 =
10 2.778e+2 1.289e+1 + 2.810e+3 7.775e+2 + 4.771e+3 1.296e+3 + 1.131e+4 4.197e+3 +
11 1.561e-1 1.951e-2 = 2.421e+0 2.051e+0 = 2.105e+1 2.101e+1 = 6.609e+1 5.959e+1 =
12 3.020e-1 2.979e-1 = 5.928e+0 1.084e+1 = 6.236e+2 5.103e+2 = 2.422e+4 3.497e+4 -
13 7.297e-1 1.668e+0 = 1.172e+1 9.213e+0 + 2.203e+1 1.120e+1 + 8.636e+1 9.057e+1 =
14 4.292e-1 3.902e-2 + 6.184e+0 4.429e+0 + 2.554e+1 2.374e+1 + 3.181e+1 3.144e+1 =
15 1.381e-1 2.126e-1 = 1.992e+0 8.072e-1 + 2.072e+1 1.996e+1 = 6.178e+1 6.768e+1 =
16 3.164e-1 6.097e-1 - 2.513e+1 8.012e+0 + 1.412e+2 1.355e+2 + 2.293e+2 2.061e+2 =
17 1.586e+0 6.926e-1 + 1.952e+1 1.909e+1 + 2.214e+2 1.255e+2 + 2.794e+2 1.198e+2 +
18 1.368e-1 2.828e-1 - 1.419e+1 1.942e+1 = 2.188e+1 2.093e+1 + 6.698e+1 4.698e+1 +
19 2.021e-2 1.757e-2 + 3.336e+0 2.037e+0 + 6.533e+0 4.998e+0 + 3.289e+1 2.838e+1 +
20 6.121e-3 2.081e-1 - 1.949e+1 1.227e+0 + 1.620e+2 2.529e+1 + 1.110e+3 1.921e+2 +
21 1.363e+2 1.521e+2 = 2.095e+2 2.040e+2 + 2.151e+2 2.104e+2 + 2.483e+2 2.452e+2 =
22 1.02e+2 1.0e+2 + 1.0e+2 1.0e+2 = 1.0e+2 1.0e+2 = 1.235e+4 4.213e+3 +
23 3.035e+2 3.04e+2 + 3.437e+2 3.420e+2 = 4.162e+2 4.135e+2 = 5.60e+2 5.570e+2 =
24 2.857e+2 3.057e+2 + 4.212e+2 4.192e+2 + 4.899e+2 4.889e+2 = 8.260e+2 8.364e+2 -
25 4.085e+2 4.077e+2 - 3.867e+2 3.867e+2 = 5.209e+2 4.853e+2 + 7.583e+2 6.981e+2 +
26 3.0e+2 3.0e+2 = 3.384e+2 7.396e+2 - 5.580e+2 7.898e+2 - 2.168e+3 2.598e+3 =
27 3.924e+2 3.932e+2 - 4.730e+2 4.746e+2 = 4.858e+2 4.824e+2 = 5.676e+2 5.545e+2 +
28 3.056e+2 3.0e+2 = 3.065e+2 3.043e+2 = 4.684e+2 4.588e+2 + 5.506e+2 5.349e+2 +
29 2.312e+2 2.288e+2 + 4.143e+2 4.041e+2 + 3.223e+2 3.142e+2 + 7.873e+2 7.460e+2 +
30 3.945e+2 3.948e+2 = 1.984e+3 1.984e+3 = 5.878e+5 5.898e+5 = 2.252e+3 2.239e+3 =



Success Rate Based Scaling Factor Adaptation in Dual-Population Differential Evolution 9

due to the fact that c = 4 results in a 4-th order root curve, where even small success rates SR
result in MF close to 0.5. This means that the algorithm will rarely use MF smaller than 0.5,
which was observed during experiments in Figures 2 and 3. However, if the success rate is high,
that means that the algorithm is probably moving solutions in the right direction, so they should
be sampled closer to some of the pbest solutions in the population. And this is exactly what success
rate based adaptation does: the more successful points are generated, the higher are sampled F
values, i.e. more solutions are generated next to better ones. The presented explanation is only our
vision of the reasons of high efficiency of L-NTRDE, and there could be some other underlying
processes.

5 Conclusion

In this study the success rate based scaling factor adaptation method was proposed for the differ-
ential evolution algorithm. The modification is much simpler to implement than the widely used
success history based adaptation, and at the same time it allows achieving significantly better
results compared to the state-of-the art algorithms. Here this method was used only for modifica-
tion of L-NTADE algorithm, however, it can be applied to any other differential evolution, as it
relies only on the improvement rate, which can be calculated for any DE-based approach. Further
studies in this direction may include evaluating the performance of success rate based adaptation
in other modern algorithms, as well as proposing novel crossover rate adaptation techniques, which
are based on success rate value.
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Abstract 

The Circle Packing Problem (CPP) is a well-known optimization problem with 

a wide range of applications. It is difficult to identify exact solutions for the 

CPP as it is a NP-hard problem. As a result, metaheuristic algorithms are 

efficient approach to address this challenging problem. This paper presents 

an extensive literature review of the role and effectiveness of metaheuristic 

algorithms in solving the CPP. The objective of this paper is to examine the 

applications, advancements, and potential of metaheuristic algorithms in 

solving the CPP. Moreover, case studies and real-world examples of how 

metaheuristics have been used to address the CPP. Finally, some suggested 

possible future areas are also highlighted for the researchers who want to 

utilize metaheuristic algorithms for solving the CPP and related optimization 

problems. 

Keywords: Metaheuristic Algorithms, Circle Packing Problem 

1. Introduction 

Placing a specified collection of circles into a 2D container with the shape of a circle, 

triangle, rectangle, polygon, etc., is known as the Circle Packing Problem (CPP). 

Usually, the objective is:         

 (a) To reduce the size of the container and the waste area as a result.  

 (b) To get the highest density, pack the container with the most circles possible. 

Two different categories of constraints apply to this arrangement:   

 (i) Boundary Constraints: It guarantees that every circle is contained inside 

the container.          

 (ii) Non-overlapping Constraints: All the circles in the container must be not 

overlapped.  

2. Literature Review 

Metaheuristics [1] are a collection of clever tactics to increase the effectiveness of 

heuristic techniques. Nowadays, there are many metaheuristic algorithms have been 

developed, such as Genetic Algorithms (GA), Particle Swarm Optimization (PSO), 

Differential Evolution (DE), Grey Wolf Optimization (GWO), Sine Cosine Optimization 

(SCO), and many more. In recent years, lots of review paper has been written on 

metaheuristic algorithms. Kanchan et al. [2] show that more than 500 algorithms have 

been developed. Moreover, [3] intended to provide a quick review of evolutionary 

algorithms, their benchmarks, and their most recent, effective applications. [4] gives a 

thorough literature overview on the use of recent (2009–2019) metaheuristic 

algorithm development to solve the feature selection challenge. [5] includes some of 

mailto:yogesh_k@ma.iitr.ac.in
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the metaheuristic algorithms that are developed between 2014 and 2020 

and summarizes the algorithms and changes made thus far. 

3. Circle Packing Problem are solved with the help of 

Metaheuristic Algorithms  

An efficient iterated dynamic neighborhood search (IDNS) approach for the equal 

circle packing problem on a sphere (ECPOS) problem [6]. The technique includes an 

adjustment method for the lowest distance between points on the unit sphere, a broad 

dynamic neighborhood search approach, a multi-stage local optimization method, and 

more.          

 With the help of straightforward combinatorial developments and robust 

geometrical analytical forms, this polynomial decoding approach enables the transition 

from the permutations search space to the packings search space. The packing 

approach is incorporated into the simulated annealing (SA) and variable neighborhood 

search (VNS), two well-known metaheuristics [7].    

 A particular instance of the two-dimensional spatial organization problem known 

as irregular bin packing is discussed. HPA (Heuristic placement algorithm), based on 

GA and GWO, after thoroughly examining the features and difficulty of the problem 

[8].            

 The two-dimensional circle bin packing problem (2D-CBPP) provides an adaptive 

local search strategy to resolve it [9]. The algorithm applies our greedy constructive 

algorithm's simulated annealing search. The greedy algorithm constructs the initial 

solution. Then a partial solution by randomly picking two bins of rectangular regions, 

eliminating the circles that cross those areas, and utilizing the greedy method to finish 

incomplete solutions.        

 A hybrid metaheuristic Adaptive Tabu search and Variable Neighbourhood 

Descent (ATS-VND) for Packing Unequal Circles into a Square (PUCS) is developed 

[10]. Variable Neighbourhood Descent (VND) and Tabu search (TS) are adaptively 

combined to form the metaheuristic. The Packing Unequal Circles into a Square 

(PUCS) problem is used to apply the metaheuristic, which is then improved using an 

Iterated Local Search (ILS) framework to produce the final IATS-VND method.

 Effectively integrated tabu search with simulated annealing to create a hybrid 

solution for the packing circle problem [11]. This algorithm's major feature is a potent 

way to escape local minima.       

 For the layout optimization challenge [12], provide a unique order-based 

placement method. A layout may be created by describing the placement of the circles 

in a permutation. The GA is an ideal approach to utilize to explore such a vast space 

because there are potential permutations for circles. The GA is utilized to develop the 

order in which the circles are placed.      

 An evolution approach with a crossover operator (ESCO) to address the restricted 

circle packing problem [13]. By using the crossover operator from genetic algorithms, 

the suggested ESCO extends a classical ES to handle combinatorial optimization. It 

aims to swap out the locations of circles to get a better packing scheme. Its objective is 

to solve the general CPP, and they gauge the packing's effectiveness by looking at 

factors like container size and the weighted average pair-wise distance between circles. 

 To solve the two-dimensional packing problem with restrictions, introduce the 

layout pattern-based particle swarm optimization technique (LPPSO) [14]. In the 

LPPSO optimization procedure, certain individuals are constructed using non-

isomorphic layout patterns and then added to the current population of the PSO 

algorithm to replace the worst individuals, resulting in the development of a new 

population.  



4. Conclusion 

It is essential to remember that several variables, including parameter choices, 

problem size, and problem complexity, can have an impact on how well metaheuristic 

algorithms work. To increase the quality of the solutions and computing effectiveness 

for the circle packing problem, further study might concentrate on optimizing the 

algorithms, examining hybrid strategies, or looking at different metaheuristic methods. 

Overall, the article provides the groundwork for future research in this field and shows 

how metaheuristic algorithms may solve challenging geometric optimization problems. 

Using metaheuristic algorithms creates new opportunities for tackling real-world 

problems in circle packing problems and related fields, advancing optimization 

approaches and their use in real situations. 
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1 Introduction

It is common practice to apply machine learning to real-life data, for example from clinical trials.
These datasets have a wide disparity in the number of features, not all of which are necessarily
relevant to the learning task in hand. The very nature of these data implies redundancy, omissions,
errors and a degree of subjectivity, all of which will have a negative impact on the quality of the
models trained.

Feature selection aims to optimise the quality of machine learning models by identifying a
feature subset that are most suitable in predicting the target feature, while discarding redundant,
noisy or harmful features. This is a crucial step in the construction of statistical and machine
learning models, because by removing unnecessary features it is possible to simplify the model
considerably. This improves the interpretability and robustness of the proposed solutions, avoiding
problems such as overfitting. To carry out this feature selection, the ideal approach would be to
evaluate all possible combinations of subsets of features to find the best possible one. However,
this approach is impractical because of the combinatorial explosion that results when the number
of features is large3. The feature selection problem is an NP-hard problem [1] which has been the
subject of a great deal of research in recent decades [2, 3, 4].

Various methods have been proposed, ranging from filter methods to strategies based on heuris-
tics. However, despite the progress made, feature selection remains an open problem. The funda-
mental reason for this complexity can be attributed to the ”No Free Lunch” theorem [5], which
states that in optimisation, no universal method offers superior performance for all problems. This
means that an optimisation method that performs very well on one specific set of problems (or
data) is likely to underperform on another. Consequently, the idea that a feature selection method
running in reasonable time can be better than all other methods whatever the data provided seems
unlikely. Instead, the emphasis should be on selecting an appropriate method based on the partic-
ularities and requirements of the problem to be solved and the quality of the data available.

For the purposes of this study, we are focusing specifically on data from the medical field.
These data come from various studies and clinical trials. These studies involve numerous institu-
tions, medical teams and patients. Each clinical trial collects data relating to the subject of the
study. These studies often have different focuses, which may explain the presence or absence of
certain data for different patients. Collecting this data is a long and tedious process that requires
direct contact with patients before reporting, which can lead to omissions or data entry errors.
Doctors sometimes use metrics that are not always objective, depending on their own perception
or that of the patients.

Due to the small amount of data, and in order to increase the quality of scientific research,
databases have been set up by pooling data from different studies. As these studies come from
different geographical areas, biases in the data and errors when integrating the data can occur.
For example, the units of measurement used to calculate a patient’s height or weight may differ
(metric or imperial). Finally, with regard to the temporality of data, during clinical trials, patients

3 Indeed, with n explanatory features, there would be 2n different subsets to explore, which in the current
state of knowledge cannot be achieved in a reasonable time.
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are monitored for varying time periods, ranging from several days to several years, and informa-
tion about them is collected periodically. However, the gaps between these periods are not always
constant for each patient, which can also introduce negative biases.

In this context, we are interested in Amyotrophic Lateral Sclerosis (ALS), also known as Char-
cot’s disease. We are attempting to predict patients’ one-year survival based on data available
after the first 3 months of the disease [6]. The data available to us are unusual in that they come
from clinical trials for a rare disease. Thus, we have a low volume of data, missing data, noisy
and/or useless data. We present an improvement of a heuristic (differential evolution) that we
use for feature selection. Our heuristic is based on an ad-hoc mutation strategy, an initialisation
based on a filter method and an optimisation of the different parameters of the heuristic. We show
experimentally that our heuristic outperforms (in many cases) the most common feature selection
techniques [1, 7] and outperforms them on ALS data in particular.

2 Standard feature selection methods

2.1 Embedded methods

Embedded feature selection methods are approaches that integrate feature selection directly into
the model learning process. Instead of treating feature selection as a separate step, these methods
seek to automatically identify and use the most informative features during the learning of the
model itself. The most commonly used methods rely on regularisation or penalty mechanisms
built into the objective function of the learning algorithm. This encourages the model to assign
lower weights to certain features, or even to remove them altogether. Techniques such as Lasso
[8] and Elastic net [9] are often used in linear classification methods such as logistic regression,
ridge regression and support vector machines. Embedded methods also include approaches based
on decision trees, such as the random forest [10]. In these methods, the importance of each feature
is assessed by measuring its impact on the accuracy of the algorithm’s predictions, by calculating
the average information gain obtained by using this feature in the construction of the trees.

2.2 Filter methods

Filter methods use statistical techniques or predefined criteria to evaluate each explanatory feature.
By using these statistical criteria, they are able to identify and filter out the least relevant features
independently of the learning method used and prior to the construction of a model.
Spearman Correlation Coefficient (SCC) evaluates a monotonic relationship between an
explanatory feature and the target feature, whether linear or not, unlike the Pearson Correlation
Coefficient (PCC) [3]. It is represented by a correlation coefficient between -1 and 1. A correlation of
1 indicates a perfect positive monotonic relationship, a correlation of -1 indicates a perfect negative
monotonic relationship, and a correlation of 0 indicates the absence of a monotonic relationship
between the two features. In a complex dataset where the relationship between features may not be
strictly linear, the SCC can provide more robust indications of the associations between features.
Analysis of variance (ANOVA) compares the means of several groups to determine whether
they are significantly different from each other. It is often used to determine whether an explanatory
feature has a significant effect on a target feature. It works by dividing the total variation in the
data into two components: variation between features and variation within features. If the between-
feature variation is significantly greater than the within-feature variation, this indicates that the
features differ significantly from one another [3].
Mutation Information (MI) quantifies the amount of information shared between two features.
It measures the reduction in uncertainty of one of the features thanks to the knowledge of the
other feature. It is the difference between the entropy of the combined features and the entropy
of the individual features. Entropy measures the amount of uncertainty or disorder in a feature,
while mutual information measures the amount of information shared by two features. [3].
Maximum Relevance Minimum Redundancy (MRMR) evaluates the relevance of features
using the mutual information between the explanatory features and the target feature. There are
two steps. First, it calculates the relevance of each feature to the target feature using the mutual
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information. Second, it uses a search heuristic to select a subset of features that maximises relevance
and minimises redundancy [11, 3].

ReliefF works by calculating weight scores for each feature based on the difference between the
values of that feature for neighbouring samples belonging to the same class and those belonging
to different classes. Features that contribute most to class distinction are assigned higher weights
[12, 3].

2.3 Wrapper methods

Wrapper methods involve creating a series of models with different subsets of explanatory features.
These models are then evaluated according to different selection criteria appropriate for evaluating
each combination. Unlike embedded and filter methods, the purpose of these methods is to find
the feature subset that optimises the performance of a specific predictive model.

2.3.1 Sequential feature selection

Sequential feature selection methods work by following an iterative scheme, where features are
added or removed one by one, depending on their contribution to the accuracy or overall perfor-
mance of the model.

Forward Feature Selection (FFS) starts with an empty model and iterates, sequentially adding
the features that significantly improve the model. The features are evaluated individually, and the
one that brings the greatest improvement at each iteration is added. [13].

Backward Feature Selection (BFS) starts with a model that includes all the features and
sequentially removes those that are least relevant to the prediction [13].

2.3.2 Heuristics

Heuristics are optimisation techniques used to find an approximate solution to a difficult optimi-
sation problem. Since feature selection is an NP-hard problem, heuristics are often used to explore
the space of possible feature combinations when the number of features is large, more efficiently
in terms of the number of calculations than sequential wrapper methods. Each potential feature
subset represents a solution. A subset of features can be represented as a vector of booleans. In
effect, each boolean represents whether or not a feature will be included in the composition of a
subset in order to carry out learning and design a machine learning model that can then be tested
and evaluated.

Random Search (RS) iteratively generates solutions with a random number of features and
evaluates them. The basic idea behind random search is to cover a wide spectrum of potential
solutions without following any specific scheme or logic. It allows a search space to be explored
quickly, but without any guarantee of finding an optimal solution, and can be useful when the
objective function is complex, non-linear or when the search space is high-dimensional. It serves
as a reference approach for comparison with the following more sophisticated methods.

Taboo Search (TS) progressively improves an initial solution by iteratively exploring neighbour-
ing solutions. Improving solutions are accepted, while solutions that do not lead to an improvement
are generally rejected. Taboo search also uses a list of forbidden solutions, called the ‘taboo list’,
to keep track of solutions that have already been explored and avoid returning to the same config-
urations. This avoids cycles and encourages the exploration of a wider search space [14, 15].

Genetic Algorithm (GA) is a heuristic based on a population composed of different individu-
als (solutions) themselves composed of chromosomes (in this case booleans). It uses evolutionary
operations to create new generations of individuals. These operations include the selection of the
more adapted individuals, the reproduction of selected individuals by crossing (genetic recombina-
tion) and the random modification of certain genes (mutation). Individuals are generally selected
on a probabilistic basis, favouring those most competent for reproduction. Across the generations,
the most competent individuals tend to spread through the population, leading to a convergence
towards individuals of better quality [16].
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Population-based incremental learning (PBIL) combines elements of genetic algorithms and
probabilistic model learning. PBIL begins by initialising a population of potential solutions rep-
resented as binary vectors. The algorithm then uses a probabilistic estimate that describes the
probability of selecting a specific feature in the model. During each iteration, new solutions are
generated using these estimates. These new solutions are evaluated and the probabilities of selecting
each feature are updated using the best-fit individuals. [17].
Differential evolution (DE) is a heuristic inspired by the genetic algorithm. It is based on
mechanisms found in nature (e.g. the evolution of a species) and defines a succession of population
generations. In each generation, the population is made up of several individuals, themselves made
up of chromosomes that will try to survive the next generation. In particular, differential evolution
uses the diversity present between individuals in the population to try to find the best ones by
using mutation operations [18].

The population is composed of N individuals denoted PG = {XG
1 , XG

2 , ..., XG
N} at generation

G (where G ∈ [1, Gmax] and XG
i,j is the j-th, j ∈ [1, D], chromosome of the individual XG

i ).
By carrying out mutation, crossover and selection operations, the population evolves through the
different generations until the stopping criterion is reached. During the initial generation, these
individuals are generated at random.

At each generation the algorithm first performs a mutation step using a mutation strategy
which can be expressed as ‘DE/x/y’ where DE stands for differential evolution, x represents how
an individual in the mutation operation is chosen and y ∈ N specifies the number of differential
individuals in the mutation strategy. The best known and most widely used strategy for mutation
is ‘DE/rand/1’ as shown below:

V G
i = XG

r1 + F × (XG
r2 −XG

r3) (1)

V G
i is the mutant obtained by mutation, i = {1, 2, . . . , N}, r1, r2, r3 are random numbers belonging

to {1, 2, . . . , N} i.e. r1 ̸= r2 ̸= r3 ̸= i and where F ∈ [0, 2] is a constant probability factor
which controls the amplification of the differential variation. For the feature selection problem,
the result of the equation 1 is rounded to the nearest value between 0 and 1. There are other
mutation strategies such as ‘DE/best/1’ which use the best performing individual for the generation
instead of one randomly chosen for XG

r1. In this paper, the ‘DE/best/1’ strategy is used for better
convergence in a limited number of generations.

The crossover step is performed to generate a new individual UG
i which is the cross between

the original individual XG
i and the mutant V G

i . The new individual UG
i is generated as follows:

UG
i,j =

{
V G
i,j , if rand(0, 1) ≤ CR or j = jrand

XG
i,j , otherwise

(2)

jrand ∈ [1, D] is a random number to reduce the chances of the individual UG
i being composed

solely of elements of XG
i and CR ∈ [0, 1] is the probability of crossover. CR has a major influence

on the diversity of the population created by the algorithm, since the number of elements that
change will vary according to its value: the greater the value, the greater the variation.

The last step is to select the best performing individuals. To determine whether the individuals
generated by the crossover stage will be kept, their score is compared with the score of the current
individuals.

XG+1
i =

{
UG
i , f(UG

i ) ≥ f(XG
i )

XG
i , otherwise

(3)

f represents the evaluation function of an individual. If an individual UG
i has a better score than

the individual XG
i then this individual is kept for the next generation, otherwise it is rejected and

the previous one is kept.

2.4 Limitations and challenges of these techniques

Embedded methods are entirely dependent on the learning method used, which distinguishes them
from other feature selection approaches. Unlike those approaches, they do not allow the use of a
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universal feature selection method that is independent of the learning method, because learning
and feature selection are intertwined. In addition, non-embedded approaches offer the possibility
of incorporating additional criteria to guide feature selection, such as expert considerations, spe-
cific domain knowledge, time or cost constraints. In this way, they offer greater flexibility in the
selection process and allow essential factors other than the properties of the model alone to be
taken into account. This is the reason why embedded feature selection methods is not taken into
account when comparing methods.

Filter methods offer a quick and simple approach to feature selection compared to other meth-
ods. They are independent of the model itself and take into account only the data, which makes
them easier to apply and interpret. However, these methods do not necessarily take into account
the interactions between the explanatory features, nor the features that are not correlated with the
target feature, nor the learning method used, although they could potentially have a significant
influence on the quality of the model. In fact, the features considered relevant and their number
for maximising predictive quality may differ depending on the learning method selected [6]. Fur-
thermore, for these methods, it is necessary to specify in advance the number of features to be
retained in order to obtain an accurate and reliable model. However, determining this number in
advance can be complex. Setting an arbitrary number of features can lead to sub-optimal models if
the number is not chosen wisely. It is therefore crucial to take these limitations into account when
using filter methods for feature selection.

The main drawback of wrapper methods is that they are directly tied to model performance,
which often leads to considerable computation times, especially when the number of features and
instances is high. Indeed, these methods simultaneously evaluate several features subset, i.e. models,
which can require significant resources. In addition, most of these methods have several parameters
that need to be adjusted to optimise performance. This requires expertise and careful exploration of
the parameter space to find the optimal values. It is therefore important to take these aspects into
account when using sequential wrapper methods and heuristics to select features. However, despite
these challenges, these methods generally offer a better ability to take into account interactions
between features and to identify non-linear relationships, which can lead to better performing
models [6].

3 A new variant of differential evolution

In this paper we propose a variant of differential evolution: Tournament In Differential Evo-
lution (TiDE). This version is based on an improved mutation strategy and an initialisation that
is better adapted to the feature selection problem.

Generating the initial population is the first step in DE, as it is in most other population-
based metaheuristics. Unlike the others, this stage is only carried out once, but it is nonetheless
important for the progress of the algorithm. Indeed, it generates several useful individuals for the
following steps. The classic DE method proposes to initialise the population by randomly generating
individuals. The random generation technique is the most widely used and is often considered to
be the most suitable for generating a population of individuals, as it allows the different zones of
the search space to be explored uniformly. However, the method does not take into account the
structure of this space or the knowledge about the optimal solution and in most cases generates
poorly performing individuals, which slows down the speed of convergence of the algorithm as
well as the chances of finding the optimal solution or at least an approximate solution. In the
feature selection problem, it is possible to use filter methods, for example, to obtain more robust
individuals as soon as the heuristic is initialised. The individual returned by the selected method
is then integrated with the rest of the randomly generated initial population.

We propose to improve the mutation strategy by using the chromosomes of the individuals
in the population. Each chromosome can take the values 1 or 0 to indicate whether a feature is
selected for learning or not, respectively. A value of F < 0.5 means that the differences between
the individuals are zero. In this case, the reference individual will always be selected, which will
not introduce any differences in the population. this considerably limits the exploration of the
search space, which can be pointless or even counter-productive, especially when the DE/best/1
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strategy is used (equation 1). From this observation, it is possible to calculate the result of all the
combinations of the initial mutation strategy DE/x/1 when F ≥ 0.5 in this way:

V G
i,j =

{
XG

r1,j , if XG
r2,j = XG

r3,j

XG
r2,j , otherwise

(4)

Carrying out this transformation removes the F factor from the equation. In addition, this approach
makes it possible to use the chromosomes present in an individual directly without having to go
through a conversion operation, which can be time-consuming when the size of a population is
relatively large. The choice of mutation strategy is crucial to achieving good convergence. The
‘DE/rand/1’ strategy takes a single random individual in the population as a reference, which allows
good exploration in the search space and maintains good diversity in the population. However,
training can be time-consuming depending on the structure of the data and the training algorithm
used, therefore the number of iterations of the algorithm is also limited. The ‘DE/best/1’ strategy
takes the best individual as a reference, which favours exploitation and faster convergence at the risk
of rapidly reducing the diversity between individuals and getting stuck in a local optimum. We can
therefore conclude that determining the reference individual is important for the strategy to work.
We propose a mutation strategy that offers a compromise between the two. At each generation
a measure of diversity is calculated using the Shannon entropy [19]. The overall diversity present
in the population at generation G is obtained by calculating the local diversity for each of the
chromosomes j ∈ [1, D] for all the individuals in the population as follows:

HG
j =

{
−
∑n

x=1 Px log2 Px, Px ̸= 0

0, otherwise
(5)

Px is the probability that a specific j chromosome is present, i.e. the probability that XG
i,j = 1,

x = {0, 1}. The local entropies (HG
j ) are then averaged to obtain the global entropy (EG). This

entropy is used to automatically adapt the mutation strategy over the generations by introducing
tournament selection to select the reference individual. Tournament selection is a strategy for
selecting individuals from a population in which several individuals are chosen at random and
their performances are compared to determine the winner of the tournament, the winner being the
best-performing individual. In TiDE, the size of the tournament varies automatically as a function
of entropy as follows:

pG = (1− EG)× (1− α) + α (6)

α ∈ [0, 1] is the minimum threshold for the percentage of individuals to be selected for the tour-
nament. This formula performs a linear interpolation between the given α and the percentage of
entropy in the population EG. More precisely, it assigns a higher percentage when the entropy
is low (close to 0) and a lower percentage when the entropy is high (close to 1). When the en-
tropy between individuals in the population is high, this means that the solutions present in the
population are diverse and potentially far apart. At this stage, giving priority to exploration can
make it possible to explore the search space further and discover new regions that could contain
better quality solutions. By introducing variations in the population, the algorithm is more likely
to discover promising solutions that have not yet been explored. On the other hand, when the indi-
viduals in the population become similar, this indicates that the algorithm has already converged
towards potentially good or optimal solutions. At this stage, exploitation is more beneficial. By
exploiting the knowledge acquired so far, the algorithm can refine and improve existing solutions,
and potentially converge on an optimal solution. By combining exploration and exploitation in an
adaptive way throughout the execution of the algorithm, the advantages of both approaches can be
exploited. Exploration avoids getting stuck in sub-optimal local regions, while exploitation allows
solutions to be refined and improved as the algorithm approaches convergence.



Optimised Differential Evolution Heuristic for Feature Selection 7

Algorithm 1: Tournament in Differential Evolution (TiDE)

P := Population of size N − 1 randomly generated individuals;
P ← Solution obtained by filter method;
while stopping criterion has not been reached do

HG := ∅;
for j := 1 to D do

if Px ̸= 0 then

HG ← −
∑n

x=1 Px log2 Px;
else

HG ← 0;
end

end

EG := 1
D

∑D
j:=1 HG

j ;

pG := (1− EG)× (1− α) + α;
for i := 1 to N do

Xr1 := Best individual from pG randomly selected individuals from P ;
do

Randomly select XG
r2 and XG

r3 from P ;
while r2 ̸= r3 ̸= i;
for j := 1 to D do

if XG
r2,j = XG

r3,j then

V G
i,j := XG

r1,j ;

else

V G
i,j := XG

r2,j ;

end

end
Randomly select jrand from [1, D];
Randomly select CR from [0.3, 0.7];
for j := 1 to D do

if rand(0, 1) ≤ CRi or j = jrand then

UG
i,j := V G

i,j ;

else

UG
i,j := XG

i,j ;

end

end

if f(UG
i ) > f(XG

i ) then

XG
i := UG

i ;
end

end
G := G + 1

end

4 Experimental methodology

4.1 Datasets and properties

ALS data come from two different datasets. The PRO-ACT database, available online [20], is made
up of clinical data on ALS. It was created to bring together data from different ALS clinical trials
to provide a comprehensive overview of their results and to facilitate research into the disease.
It is freely accessible to researchers and clinicians, making it a valuable tool. The data in this
database is frequently used to evaluate the effectiveness of new treatments for ALS, as well as to
better understand the properties of the disease and the associated risk factors. It is structured
in several tables according to patient information such as age, sex, type of ALS, stage of disease
and medical test results, as well as information on treatments received by patients, such as drugs,
therapies and surgical interventions. It is the largest reference database on ALS, offering a unique
opportunity to develop prognostic models. The Exonhit database is made up of patients from the
Exonhit Therapeutics clinical trial [21]. It includes 400 patients who were followed for 18 months,
from October 2002 to August 2004. The aim of this clinical trial was to evaluate the effect of
pentoxifylline on ALS patients, with a view to developing a complementary treatment to riluzole if
efficacy was observed. The study demonstrated that the use of pentoxifylline was not particularly
beneficial to patients and should be avoided in combination with riluzole.

The aim of our study is to demonstrate the contribution of our feature selection method. The
structure of a dataset can have strong consequences on the efficiency of different selection methods
and it is common to have poorly structured data with several anomalies [4] e.g. ALS data. Therefore,
we evaluate the performance of the different feature selection methods also in several scenarios with
different structures that may represent a challenge for their proper functioning; Noisy data at class
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level, Noisy data at feature level, Redundant features, Imbalance between classes, Large number
of features, More features than instances, Several anomalies at the same time.

For each of these artificial datasets we specify the structure that the dataset must have, i.e. its
number of instances and features, which are relevant and which are redundant, the distribution of
instances between the different classes and the difficulty of the classification problem. In addition,
we also evaluate the selection methods on the Madelon dataset so that we can compare the results
we obtain with those in the state-of-the-art [3, 4]. This is an artificial dataset which has the property
of having highly non-linear data and was designed specifically to evaluate feature selection methods
for the NIPS 2003 feature selection challenge [22].

Table 1. Properties of the different datasets

Name
Instances
(Train, Test)

Features Relevant Redundant
Class
Noise

Attribute
Noise

Minority
class

ALS (4556, 366) 62 ? ? 0 0 0.18
Madelon (2000, 600) 500 20 0 0 0 0.5
Baseline (2400, 600) 100 10 0 0 0 0.5
Class Noise (2400, 600) 100 10 0 0.2 0 0.5
Feature Noise (2400, 600) 100 10 0 0 0.2 0.5
Redundant (2400, 600) 100 10 10 0 0 0.5
Imbalanced (2400, 600) 100 10 0 0 0 0.35
Features 1 (2400, 600) 500 10 0 0 0 0.5
Features 2 (600, 150) 1000 10 0 0 0 0.5
All (2400, 600) 500 10 10 0.2 0.2 0.38

The ‘Baseline’ dataset is a dataset which has no special properties. This dataset is then used as
the basis for creating the other datasets, the properties of which are given in Table 1. The ‘Class
Noise’ dataset is obtained by randomly inverting a specific number of class instances in the training
data. The ‘Feature Noise’ dataset is obtained by adding a random number to the values of randomly
chosen features in the training data. The purpose of these datasets is to study the sensitivity of
the methods to the noise present in the data. The ‘Imbalanced’ dataset has the same properties
as the ‘Baseline’ dataset, with the exception of the unbalanced distribution of instances between
the classes, which makes it possible to evaluate the impact of the ratio between the classes. The
‘Features 1’ and ‘Features 2’ datasets allow us to evaluate the effectiveness of our methods as the
number of features increases. In ‘Features 1’ we add 400 more random features, while in ‘Features
2’ we add more features than instances. Finally, the last dataset, ‘All’, represents a dataset that
contains several anomalies simultaneously.

4.2 Evaluation criteria

Predictive quality: To evaluate the performance of the models obtained, we calculate the bal-
anced accuracy (BA) score ∈ [0, 1] from the True Positives (TP), False Negatives (FN), True
Negatives (TN) and False Positives (FP). The balanced accuracy is the average between the sen-
sitivity ( TP

TP+FN ) and the specificity ( TN
TN+FP ). It represents the average percentage of prediction

scores for each class weighted by the size of each class, allowing a model to correctly identify the
examples in each class, without being influenced by class imbalance. A score of 1 indicates no error
observed by the model.

Number of features selected: As a second criterion, we use the number of features selected.
It is important to consider the number of features selected in addition to predictive performance
when evaluating a feature selection method on a dataset, for several reasons. The greater the
number of features, the more complex the model will often be, which can considerably reduce the
model’s interpretability. Furthermore, in real-world data such as ALS, some features may be costly
or difficult to collect. If a large number of features are selected, this can lead to additional costs in
terms of data collection and preparation. It is therefore important to consider whether the benefits
obtained by adding these features justify the associated costs. In this study, we propose a variant
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of balanced accuracy that also takes into account the number of features included in the model.
This is also the score that the heuristics optimise during their execution:

score = BA− (10−3 × D̄

D
) (7)

D̄ represents the number of features selected from the total D features. In this way, even if there
are two subsets with the same predictive quality, the less complex model will be considered to
perform better.

Stability of scores: Filter and sequential wrapper methods give the same results every time they
are run, but this is not necessarily the case for heuristics. The stability of the predictive perfor-
mance of a feature selection method indicates its ability to produce consistent and reliable results.
If a feature selection method is unstable, the results may vary considerably from one data sample
to another, calling into question the validity and robustness of the features selected. To assess the
stability of the different methods, they were run 10 times for each dataset.

Convergence Speed: For heuristics it is important to evaluate the convergence speed. In many
scenarios, it is essential to have analysis results available quickly to make decisions or meet time
requirements. In addition, some learning methods can take from several seconds to several minutes
to execute depending on the data properties. If a feature selection method converges slowly, it
may not be practical or applicable in situations where quick results are required. The convergence
speed therefore becomes a critical factor to consider when assessing the usefulness and feasibility
of the method. This is why the stopping criterion for the heuristics has been set at two hours of
computing time for each of the experiments.

4.3 Learning methods

Seven learning methods were used during the experiments: logistic regression (LR), ridge regression
(RR), random forest (RF), support vector machine (SVM), K-nearest neighbour (KNN), gaussian
naive bayes (GNB) and linear discriminant analysis (LDA). These learning methods were imple-
mented using the python library scikit-learn (1.2.1) [23]. For the heuristics, the choice of learning
method was integrated directly by associating a learning method with each solution (or individual)
in addition to the booleans that compose. This increases the search space but allows the heuristics
to converge towards the best performing of the seven available methods, thus guaranteeing the best
predictive quality. In the case of filter and sequential methods, the subset returned corresponds to
that obtained with the learning method offering the best predictive quality.

4.4 Settings and reproducibility

For the filter and sequential methods, the number of features to be selected at the end of the
process is determined depending on the number of relevant features if known, and by the number
of features of the best result obtained during our experiments with the other methods (ALS). Each
heuristic was applied to a population (or neighbourhood) of 100 individuals (or solutions). For the
TS heuristic, the distance to each neighbour varied randomly between 1 and 5. For GA, the number
of mutations per individual is also randomly chosen between 1 and 5. For PBIL, the learning rate
and the mutation shift are fixed at 0.1, while the mutation probability is 0.05. For DE, the values of
F and CR are 1.0 and 0.5 respectively. The ‘TIDE + ReliefF’ method uses the ReliefF method as a
filter during initialisation, while the ‘TIDE’ method performs a random initialisation. In both cases,
the value of α is initialised to 0.9. For each dataset, the set of feature selection methods was run
10 times simultaneously on multiple processors, with a time limit of 2 hours as a stopping criterion
(whenever appropriate). All the experiments were carried out on a machine running Windows 11
64-bit (version 10.0, build 22621). The processor used was an Intel(R) Core(TM) i7-10700KF with
16 cores, accompanied by 32 GB of RAM and an NVIDIA GeForce RTX 3060 Ti graphics card.
For more details on the hyper-parameters of the learning methods, the code is available on GitHub
[24].
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5 Results

Table 2 presents the performance of each feature selection method on each dataset. The results
demonstrate the significant impact of feature selection on the predictive quality of a model, par-
ticularly when the number of features is high (Madelon, Features 1, Features 2). For example, the
‘TIDE+ReliefF’ method achieves a score of 97.97% compared to 63.23% without selection, an im-
provement of 34.67 percentage points. In general, heuristics appear to outperform filter methods,
especially DE and its variants, in all datasets, regardless of their structure. Furthermore, the results
obtained surpass those reported in the state of the art [3, 4]. The hybrid heuristic ‘TIDE+ReliefF’
outperforms ‘TIDE’ and other methods in most cases, highlighting the value of using filter methods
in conjunction with heuristics to obtain a more relevant feature subset. In addition to obtaining
the best predictive quality, it also manages to converge on smaller feature subset than the rest of
the methods (Table 3), is one of the most stable heuristics in terms of score (Table 4) and its con-
vergence speed remains at the same level as the rest of the heuristics (Table 5). The final ranking
of a feature selection method is obtained by summing the rankings of the feature selection method
for each dataset. Based on our empirical results, we find that the use of differential evolution and
in particular our variant ‘TIDE+ReliefF’ leads to a better predictive quality.

Table 2. Results of feature selection methods for the predictive quality criterion (Balanced Accuracy).
The superscript number indicates the learning method that gave the best predictive quality: LR (1), RR
(2), RF (3), SVM (4), KNN (5), GNB (6), LDA (7).

Method ALS Madelon Baseline
Class
Noise

Attribute
Noise

Redundant Imbalanced Features 1 Features 2 All Rank

No Selection 71.89% 1 69.17% 5 73.23% 5 67.90% 2 75.07% 5 80.73% 5 74.21% 5 65.57% 5 63.23% 6 69.30% 4 13
SCC 66.65% 6 87.17% 5 77.82% 5 72.16% 2 77.82% 5 76.82% 5 76.77% 5 77.83% 5 70.00% 5 69.94% 5 11
Anova 65.16% 6 87.83% 5 77.82% 5 73.66% 1 78.49% 5 77.32% 5 77.06% 5 77.83% 5 71.33% 5 72.30% 5 10
MI 66.47% 5 76.67% 5 71.66% 6 64.82% 2 70.66% 6 77.32% 3 77.06% 6 77.83% 2 71.33% 2 72.30% 6 14
MRMR 67.94% 6 72.00% 5 76.16% 5 69.49% 6 75.82% 5 76.66% 5 75.03% 5 75.83% 5 71.33% 6 64.29% 6 12
ReliefF 66.98% 6 86.33% 5 88.82% 5 79.82% 5 88.82% 5 77.49% 5 81.80% 5 89.00% 5 72.00% 3 72.95% 5 8
FFS 70.38% 6 90.33% 5 88.82% 5 72.16% 3 88.82% 5 88.82% 5 87.79% 5 88.83% 5 71.33% 6 68.49% 3 7
RG 81.07% 4 78.05% 5 79.70% 5 74.38% 5 79.88% 5 82.99% 5 78.92% 5 72.07% 7 72.10% 1 71.41% 5 9
TS 77.50% 4 88.22% 5 88.47% 5 80.83% 5 88.63% 5 87.86% 5 87.15% 5 81.70% 6 91.50% 6 80.40% 5 5
GA 81.37% 4 88.07% 5 88.49% 5 80.59% 5 88.74% 5 87.84% 5 86.96% 5 81.04% 5 89.43% 1 80.42% 5 6
PBIL 81.87% 4 90.17% 5 90.86% 5 79.36% 4 91.04% 5 88.86% 5 89.45% 5 82.34% 6 95.89% 1 81.68% 5 4
DE 81.83% 4 95.13% 5 90.85% 5 81.08% 5 90.87% 5 88.90% 5 89.62% 5 85.75% 6 97.70% 1 86.90% 5 3
TiDE 82.04% 4 95.43% 5 91.34% 5 79.81% 1 91.11% 5 89.45% 5 90.04% 5 86.73% 6 97.57% 1 84.39% 5 2
TiDE + ReliefF 81.96% 4 95.85% 5 91.53% 5 86.40% 5 91.60% 5 89.45% 5 90.11% 5 92.30% 5 97.97% 1 84.54% 5 1

Table 3. Results of the methods for the criterion of the number of features selected as a percentage of the
total number of features

Method ALS Madelon Baseline
Class
Noise

Attribute
Noise

Redundant Imbalanced Features 1 Features 2 All Average

RG 74.52% 41.88% 64.10% 41.40% 58.80% 73.82% 55.60% 26.26% 30.03% 81.92% 54.83%
TS 57.74% 41.52% 35.50% 39.10% 32.50% 45.18% 39.70% 38.26% 30.66% 50.50% 41.07%
GA 62.42% 42.34% 39.70% 42.20% 40.40% 60.00% 50.60% 30.66% 35.18% 61.08% 46.46%
PBIL 52.42% 42.16% 28.00% 39.70% 27.50% 44.00% 32.90% 43.16% 45.29% 46.72% 40.18%
DE 55.65% 37.86% 30.00% 41.50% 29.90% 49.45% 36.60% 35.58% 32.02% 51.26% 39.98%
TiDE 53.39% 34.68% 27.10% 43.00% 25.40% 48.36% 33.20% 36.20% 32.28% 51.80% 38.54%
TiDE + ReliefF 60.16% 19.86% 17.30% 18.80% 17.20% 46.73% 22.50% 4.06% 27.65% 41.42% 27.57%

Table 4. Results of feature selection methods for the score stability criterion (standard deviation), for 10
experiments

Method ALS Madelon Baseline
Class
Noise

Attribute
Noise

Redundant Imbalanced Features 1 Features 2 All Average

RG 0.71 1.66 0.68 0.88 0.59 0.42 1.13 0.66 0.87 0.32 0.79
TS 2.88 1.09 0.51 1.76 0.35 0.64 0.57 0.82 2.73 0.69 1.20
GA 0.61 1.52 0.44 2.47 0.50 0.45 0.85 1.97 2.44 1.27 1.25
PBIL 0.32 0.77 0.47 0.41 0.46 0.68 0.59 1.57 0.80 1.15 0.72
DE 0.38 0.80 0.24 2.22 0.25 0.68 0.37 0.98 0.56 2.54 0.90
TiDE 0.17 1.15 0.34 0.34 0.36 0.51 0.22 1.12 0.78 2.21 0.72
TiDE + ReliefF 0.68 0.49 0.29 0.24 0.25 0.47 0.37 0.37 1.18 3.07 0.74



Optimised Differential Evolution Heuristic for Feature Selection 11

Table 5. Results of the methods for the convergence speed criterion

Method ALS Madelon Baseline
Class
Noise

Attribute
Noise

Redundant Imbalanced Features 1 Features 2 All Average

No selection 00:00:01 00:00:05 00:00:01 00:00:01 00:00:01 00:00:02 00:00:01 00:00:06 00:00:01 00:00:07 00:00:03
SCC 00:00:01 00:00:01 00:00:01 00:00:00 00:00:01 00:00:01 00:00:01 00:00:01 00:00:01 00:00:01 00:00:01
Anova 00:00:01 00:00:01 00:00:00 00:00:00 00:00:00 00:00:00 00:00:00 00:00:00 00:00:00 00:00:00 00:00:00
MI 00:00:03 00:00:07 00:00:02 00:00:02 00:00:02 00:00:02 00:00:02 00:00:07 00:00:05 00:00:07 00:00:04
MRMR 00:00:11 00:00:14 00:00:11 00:00:11 00:00:13 00:00:13 00:00:13 00:00:13 00:00:16 00:00:14 00:00:13
ReliefF 00:01:58 00:07:31 00:01:51 00:01:35 00:01:53 00:02:07 00:01:55 00:08:16 00:04:20 00:09:30 00:04:05
FFS 00:10:15 00:51:14 00:03:22 00:03:03 00:03:23 00:03:55 00:03:25 00:38:46 00:20:46 00:40:14 00:17:50
RG 00:47:51 01:00:30 00:59:34 01:02:15 01:08:28 01:08:09 01:06:10 01:16:12 00:53:32 01:17:05 01:03:59
TS 00:01:29 01:33:54 01:28:00 01:13:35 01:09:26 01:09:06 01:13:50 00:57:02 01:07:35 01:16:15 01:07:01
GA 01:26:30 01:24:18 01:05:08 00:55:42 00:58:34 01:03:53 00:53:08 01:12:51 01:02:52 00:54:01 01:05:42
PBIL 01:11:40 01:51:25 01:11:34 00:58:45 01:09:01 01:12:15 01:03:38 01:52:38 01:34:53 01:47:43 01:23:21
DE 01:45:43 01:09:00 00:58:58 01:05:06 01:14:12 01:05:38 00:44:55 01:26:50 01:03:55 01:53:34 01:14:47
TiDE 01:39:22 01:44:19 01:00:35 01:08:29 00:56:49 00:58:02 01:07:18 01:32:10 01:31:33 01:56:14 01:21:29
TiDE + ReliefF 01:17:38 01:15:55 00:53:24 00:51:07 01:10:20 00:55:40 00:59:44 01:04:36 01:40:22 01:55:38 01:12:26

6 Conclusion and prospects

In this work, we compared the experimental performance of different feature selection methods with
the aim of optimising the predictive quality of trained models. In particular, we looked at data from
the medical field, which poses a number of challenges (low data volume, missing data, noisy and/or
useless data). The differential evolution heuristic seems to stand out. We have therefore proposed
a new optimised version (population initialisation using a filter method, ad-hoc mutation strategy)
which achieves even better results. This good performance is intriguing given its lack of popularity
in the scientific literature for the specific problem of feature selection. We therefore recommend
using differential evolution rather than other methods. In the future, it would be interesting to
explain this apparent superiority from a theoretical point of view, or to identify datasets for which
its performance would be less impressive.
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Abstract. This study addresses a real industrial problem faced by a company operating an
energy distribution network: the efficient assignment of tasks to their agents. This problem
involves determining the best routes for agents to visit multiple tasks, known in the literature
as the Technician Routing and Scheduling Problem (TRSP). It considers a limited number of
agents, and tasks located in different areas. Each task has a service duration, a time window
during which the service should be executed, and a set of required skills. Additionally, agents
possess different skills, multiple availability intervals, and a maximum daily working time.
The objective is to minimize the total traveled distance, including penalties for unrouted
tasks. To tackle this problem, we propose an order-first split-second approach that combines
a memetic algorithm using a giant tour encoding of the chromosome with an extension of the
optimal split method. Our primary objective is to evaluate the effectiveness of this approach
on a real case of the TRSP problem in the context of energy network management. The
second objective is to compare our genetic algorithm, which uses the giant tour encoding
with a genetic algorithm scheme that employs an indirect encoding representation proposed
in the literature. Il is worth noting that this indirect enconding has proved its effectiveness
on real instances of an industrial problem, which is similar to our case study. We aim to test
different implementations of the proposed genetic algorithms on real instances to evaluate
the impact of the extended optimal split, local search, and encoding type.

1 Introduction

This paper is motivated by an application encountered by an Energy Distribution System Operator
(DSO) related to efluid, a company specialized in developing an expert software package solution
that covers all requirements of electricity, gas, and water stakeholders. The problem addressed
in this paper involves the management of electricity and gas networks. For a network operator
(DSO), issues such as the installation and maintenance of equipment in the energy network must
be solved within a given period of time. Failure to allocate resources effectively (materials and staff)
can result in penalties and a decline in customer service quality. Additionally, specific constraints
within this environment must be taken into account. Tasks are generally constrained by time
windows, and some tasks, such as changing high voltage lines, may require specific skills or the
participation of multiple agents simultaneously. There can also be multiple interventions at the
same site throughout the day, requiring the involvement of the same agent for effective knowledge
of the location and environment. Furthermore, in certain situations like power cuts intervention,
agents may need to focus on specific skills for a part of the day.

These various interventions require skilled agents and necessitate careful planning based on the
availability of agents and the required skills for interventions. Thus, technicians routing and tasks
assignment are crucial considerations in the context of energy network management. This issue
is modeled in the literature as a Technician Routing and Scheduling Problem (TRSP)[14]. The
TRSP belongs to the broader class of routing and scheduling problems called Workforce Routing
and Scheduling Problems (WRSP)[6]. Specifically, WRSP refers to situations where workers need to
travel to different customer locations using vehicles to perform assigned field operations. The tasks
must be executed within their time windows, require certain skills for their completion, and are
characterized by a service time, while the travel time between tasks can be significant. The number
of activities at different sites is usually greater than the number of available employees, which
means that employees must travel between sites to do their work. This results in a combination
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of personnel scheduling and vehicle routing problems. Several objectives can be considered, such
as reducing personnel travel time because travel time is considered as paid working time, reducing
the cost of temporary personnel, and maximizing customer satisfaction. The WSRP has been
extensively studied in the literature, with many variants corresponding to different application
domains. For example, home care, with the scheduling of nurse’s visits to their patient’s homes
[21], security agent’s rounds in different locations, delivery services, the restaurant industry, and
cleaning services [13]. All these applications involve scheduling and routing agents to ensure they
reach designated locations on time to carry out assigned activities.

The TRSP problem is a special case of the WRSP and is specifically designed for applications
where the objective is to optimize the routing of technicians or service personnel for maintenance
or repair tasks. This problem typically involves determining the best routes for technicians to visit
multiple customer locations or equipment sites, considering factors such as distance, travel time,
service priorities, and technician skills. It is particularly relevant in industries such as telecom-
munications, utilities, and facilities management.While the home care and delivery domains have
received a rich research coverage [25], the problem of technician routing is much less present in
the literature, despite its strong functional component. Therefore, only the specificities that are
found in particular for home care benefit from proven solutions.The TRSP models in the literature
take into account classical constraints such as the management of technician’s skills [10] and their
availability [4], and time windows for interventions. In practice, the TRSP often involves working
with complex business constraints [20] [11].

A review of the literature on TRSP and WRSP problems reveals that metaheuristics have
been widely used to solve these problems. For instance, invasive weed pptimization [22], tabu
search coupled with an adaptive memory [17], adaptive large neighborhood search [15], particle
swarm optimization [18] [12] have been investigated. Genetic algorithms, in particular, have been
successful, in addressing various variants of TRSP and WRSP [19][9][7].

In this paper, we propose an order-first split-second approach to address a real TRSP problem.
The approach combines a memetic algorithm (genetic algorithm with local search as a mutation
operator) using a giant tour encoding of the chromosome with an extension of the optimal split
method [24] to solve real instances provided by efluid. This approach has proven its effectiveness
for various Vehicle Routing Problem (VRP) variants [24] [16] [5]. Here, we propose an extension of
the optimal split method to handle the specific constraints of our problem. Our primary objective
is to evaluate the effectiveness of this approach on a real TRSP problem within the context of
energy network management.

Further research into the literature revealed that real instances of WRSP, similar to our case
study, were efficiently solved using a genetic algorithm with indirect encoding [3]. This encoding
produced competitive feasible solutions for highly constrained WSRP. Hence, the second objective
of this paper is to compare our genetic algorithm using the giant tour encoding with a genetic
algorithm schema that uses the indirect encoding proposed by [3]. We aim to test different imple-
mentations to evaluate the impact of the extended optimal split, local search, and encoding type
on the studied problem.

The remaining sections of this paper will be organized as follows: In Section 2, we will define
our industrial problem and emphasize its significant characteristics. Section 3 will present two
genetic algorithm approaches. The first approach is based on the indirect encoding technique from
the literature, which we have adapted to suit our problem. The second approach is based on the
giant tour representation and incorporates an extension of the optimal split method. Section 4 will
present the industrial instances used in our study, along with a comparative analysis of several
genetic algorithm implementations. This analysis will include the use of local search as a mutation
operator (memetic algorithm), as well as the use of an optimal split method, and a simplified split
based on a sequential technique. Finally, conclusions and perspectives will be given in section 5.

2 Problem definition

This paper focuses on an industrial application of the technician routing and scheduling problem
in the context of energy network management. The problem is defined on complete directed graph
G = (V,A). The set of arcs is denoted by A = {(i, j) | i, j ∈ V } . Each arc (i, j) of A is described
by distance ci,j , travel time τij . V denotes the set of vertices composed of a depot denoted by 0,
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and n customers that each customer represents a unique task. A task defines a customer’s request
for an installation or maintenance operation on the energy network such as changing an electricity
meter, installing and repairing equipment, and maintaining power lines. Each task i ∈ V has an
associated service duration si , a time window [ei, li], within which the service should be executed.
A list ri of required skills is defined for each task i.

A set K = {1, . . . , nk} of technicians are available to perform the tasks. Each technician is
specialized in a number of skill domains. There are compatibility constraints between tasks and
technicians, since different skills are required to perform different tasks and a technician does not
necessarily have all those skills. Every technician departs from and returns to the depot, and has
a maximum working time denoted by T . A specific constraint of our industrial problem, which
to our knowledge has not been addressed in technician routing and scheduling problems, is the
fact that technicians have multiple availability intervals. Outside these intervals, technicians have
other specific tasks, which are outside the scope of our study. The aim is to assign a subset of
tasks to each technician and to construct a route over each subset to minimize the total traveled
distance. The routes must satisfy the compatibility constraints between tasks and technicians, the
time bounds for the service of each task and for the return time of each technician at the depot,
and the availability intervals of technicians. It is also assumed that not all tasks can be served
by the technicians. Thus, a penalty, denoted by P is associated with each unrouted task and the
minimization of the total penalty becomes part of the objective. The value of this penalty is set to
P = 200 in our study. This corresponds to the maximum distance in kilometers that a technician
would travel to perform a single task, which is the farthest one. A TRSP solution consists in finding
a sequence of feasible tasks to be carried out by each technician according, while satisfying all the
constraints of our problem. Each sequence begins and ends at the depot. The aim is to minimize
the total distance covered to perform all the assigned tasks, and the total penalty distance for
unperformed tasks.

3 Genetic algorithms

The Genetic Algorithm (GA) has been successfully used to deal with a large variety of combinato-
rial optimization problems, including the Technician Routing Problem [8] [14]. A genetic algorithm
scheme with indirect encoding proposed in [3] has shown its effectiveness, and allow an efficient
customised chromosome representation combined with problem-specific genetic operators for tack-
ling real-world WSRP instances. The advantage of the proposed indirect encoding is the smaller
and simpler search spaces that are produced, to ensure the feasibility of solutions.

Our aim is to compare two genetic algorithms schemes. The first one uses the indirect encoding
and the crossover proposed in [3], referred to as GA-I, and the second schema, entitled GA-S, is
based on a giant tour or task ordering chromosome representation and a splitting procedure used as
a decoding process. In the context of VRP and its variants, several metaheuristics including splitting
procedure reported very good results. The key feature of these metaheuristics consists in encoding
solutions as giant tours and using a splitting procedure to extract the corresponding solution of the
studied VRP [24] [16]. The split procedure computes a shortest path in an auxiliary graph, in which
each arc models a possible trip [24]. Several extensions of the split procedure were proposed in the
literature to deal with extensions of classical routing problems. In this paper, we propose a novel
split extension to handle simultaneously several realistic constraints such as a limited heterogeneous
fleet of vehicles, compatibility between tasks and resources, multiple availability time windows per
resource, a time window per task, and thethe possibility to skip tasks in the giant tour sequence.

The general framework of the both GAs is the same and will be detailed in the following. The
initial population of size N is generated randomly using one of the proposed encoding schemes.
Subsequently, the GA runs for a number of iterations. In each iteration, the following steps take
place. First, each individual in the population is evaluated based on its fitness after applying a
decoding or split procedure to extract a feasible solution from the used encoding scheme. Second,
N/2 of individuals are selected by tournament selection, and crossover operators are applied to
this pair of parents to produce N solutions, called children. Thirdly, a mutation is applied to each
generated child with a given probability. If the solution obtained after mutation is better than the
solution it started from, it replaces the latter in the population; else, the solution before mutation
or local search is retained. Finally, a replacement strategy based on binary tournament selection
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of individuals from the new population formed by N parents and N children, is used to create the
new population. The best solution is always preserved in the population for the next generation.
The best solution is returned when the stopping criterion of the GA is met.

The main contribution of our GA-S method is the extension of the classical optimal split
procedure to handle the constraint of our industrial problem, and the comparison between two
efficient encoding schemes proposed in the literature. Following, we’ll first outline the specific
features of each genetic algorithm schema, then we present the common ingredients to both schemes
as the mutation operators, and the selection and replacement strategy.

3.1 Genetic Algorithm with Indirect encoding (GA-I)

The study in [3] investigated a genetic algorithm with indirect representation schema for an indu-
trial application of WSRP, that allow maintaining feasible solutions throughout the evolutionary
process. The study presented solution encoding, that is capable of producing competitive feasible
solutions for a highly constrained WSRP. We propose here a genetic algorithm schema including
the main component of [3] which are the chromosome encoding representation and the crossover
operator.

Indirect chromosome representation Indirect gene encoding is a lesser known approach for
solving VRPs using genetic algorithms [2] [3]. It relies on a more indirect way of encoding genes,
but allows generating genes without value restrictions. This enables a wider variety of operators
without the need for specific repair procedures. To explain this part, we will use the concept of slot-
agent. These are the cartesian product of the agents and the time windows. In [3], each individual
is represented as a vector of integers of size n, which corresponds to the number of tasks in the
schedule. The integer value at each position in the vector indicates the worker assigned to that
particular task. To ensure temporal feasibility, the tasks in the chromosome are sorted in a non-
decreasing order based on their start time. Then, for each task, the compatible agents are sorted
using an heuristic. Then, for each task, we use the first integer of the gene as the index in wsl of
the slot-agent which will do the task. If the slot-agent is already full, we use the next slot-agent in
wsl. If we exhaust all slot-agents left in wsl, we consider the task is non-assigned.

We have proposed two adaptations of the representation described above to deal with the
constraints of our problem. The first one is the use of a vector of two integers. The first integer
has the same goal than the one from the literature. The second helps to place the task inside a
time window. All tasks in the same time window are ordered according to this second integer.
The second adaptation is that, for each task, [3] compute a penalty cost of doing the task inside
each slot-agent, and order slot-agents by this cost for each task. We don’t have for the moment
a good metric to order our slot-agents, so we will just add to that ordered list (noted wsl in the
other paper) for each task the slot-agents which are able to do task (these which respects the time
window and the skill needed).

Fig. 1: Example of an indirect encoding
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The figure 1 shows an example of indirect encoding. There is above left a gene g1, and the
example will show how this gene could be decoded. We have three agents, with A3 working only
on afternoon. The left table shows for each task which agent can do them, that is wsl. We will
assume for this example that each slot-agent can do exactly two tasks. Green cells indicate time
windows retained, while orange ones indicate non-feasible solutions. That’s why the cell just under
is either orange or green (that is the test of the next solution). Index begin at 0, so the ”1” for t1
means the second line of the table.

We see that the first number in the gene impact the placement in the table. For t7 and t8, the
first proposition was already occupied, so we take the next one. For t5 and t7, no proposition is
selected, that means they are not affected. The planning proposed by this gene is the left-below
table. With this, we can calculate the score.

The worst-case complexity of this algorithm is in O(nk∗c∗n), where a is the number of workers,
c is the number of time windows and n the number of tasks. But, the choice of time window given
by the gene is often the good one, so it becames often a complexity in O(n).

Crossover operator. Indirect encoding doesn’t use ordering of tasks. Therefore, we can use
more generic crossover algorithms. The one we used here is the Uniform Crossover (UX). Since the
indirect encoding preserves the feasibility, UX is better at generating new solutions than one-point
or two-points crossover, that are more adapted at keeping a sequence of the gene.

In UX, each gene of the offspring is inherited randomly from either parent with a fixed prob-
ability. This means that for each gene position in the offspring, there is a certain probability that
the gene will be copied from the corresponding position of the first parent, and a complementary
probability that it will be copied from the second parent.

Chromosome evaluation. A decoding procedure is necessary to extract solutions from chromo-
somes, and to evaluate it, we use the decoding method presented above. Then, we establish the
distance between tasks for each route and we sum it. We add the penalty for each undone task
and we obtain the total cost of the solution. The complexity is held by the decoding algorithm (see
3.1), so the complexity is generally in O(t).

3.2 Genetic Algorithm with Splitting (GA-S)

In the following, we will present the chromosome encoding within the framework of the GA-S
schema, the crossover operator used, and we will focus on the description of the optimal split
method that we have adapted to the constraints of our problem.

Giant tour chromosome representation. Most genetic algorithms for routing problems use
quasi-direct representations of solutions, as sequences of tasks. In our GA-S, a chromosome g
simply is a sequence of n tasks, without trip delimiters, and with implicit shortest paths between
consecutive tasks. g can be viewed as a giant tour ignoring the constraints of our problem.

Crossover operator. Our giant tour representation without trip delimiters can undergo classical
crossovers for permutation chromosomes. The resulting children can be immediately evaluated
with split. Because the chromosome before splitting may be viewed as a circular object (giant
trip), we have decided to use a classical crossover, named Order Crossover (OX), which maintains
the circular nature of the giant trip.

Given two parents P1 and P2 with n tasks, OX draws two cutting sites p and q with 1 ≤ p ≤
q ≤ n. To get the first child C1, OX copies P1(p), ..., P1(q) into C1(p), ..., C1(q). P2 is then scanned
from P2(q + 1), ..., P2(n), then from P2(1), ..., P2(p − 1), with restriction that tasks from P2 are
taken only if missing in C1. However, C1 is interpreted as a circular list and the result stored such
that C1(p) = P1(p). The other child C2 is obtained by exchanging the roles of P1 and P2. An
example is shown in figure 2.



6 Cardinaël, Ramdane Cherif-Khettaf, Oulamara

Fig. 2: Example of OX crossover

Optimal splitting. The main idea behind splitting is that the VRP problem has two parts: the
clustering of tasks into multiple routes, and the scheduling of tasks into those routes. If the two
aspects cannot be entirely uncorrelated, the splitting will participate in reinforcing the clustering
side of the problem, with an order-first split-second approach [16]. The goal of the split procedure
is to cut the giant tour given by the chromosome into routes for the technicians. it keeps the order
given by the giant tour, and extract feasible routes and unrouted tasks. That’s why we are in an
order-first split second approach.

In this paper, we propose to extend the split procedure for heterogeneous fleet [23] to deal with
the constraints of the studied TRSP . For a given visiting sequence (t1, . . . ..tn) of n customers let
ti be the customer in position i. An auxiliary graph H=(V, U) is defined, V includes n+ 1 nodes
indexed from 0 to n. Each subsequence (ti+1, . . . , tj) corresponding to a feasible trip is modeled in
A by an arc (i, j), This trip is starting from the depot, visiting customers ti+1 to tj , and coming
back to the depot. Each arc (i, j) is evaluated by a cost that represents the sum of the total tour
distance (0, ti+1, .....tj , 0) and a penalty calculated as P × na (na denotes number of tasks not
achieved, and P is a penalty of one unrouted task). Each task can be skipped in the sequence, with
a penalty linked to its omission. We have to select one compatible resource for each arc in U , in
such a way that each resource will be used at most one in the final path. We have to remember
for each node j in U the resources consumption of the partial path to know if it can be extended.
We should store at each node j the labels of all incoming paths because it is not certain that
the cheapest path can be extended to reach the final node. We propose to use several vectors of
multi-labels per node j. Each vector represents the consumption and the cost of one feasible partial
path arriving to j. In each vector, labels design first the resources used for the considered partial
path extended from i, then the incoming node i, and finally the total cost. We also consider the
case of skipping all tasks from the depot to node j, by creating an arc with cost corresponding to
the total penalties related to the number of skipped tasks. In practice, we use a dominance rule to
discard many labels, and only non-dominated labels are stored on each node. The dominance rule
helps to eliminate useless cases, and consists in two subrules :

– If a label is a subpart of another label and has a worst score, then it is removed

– If a label has a worst score than another label considering all tasks left as undone, then it is
removed

The complexity is in O(f ∗n) with f the number of vectors (depending on the number of agents)
and n the number of tasks, as long as the number of vectors does not go wild. That’s why we need
dominance rules to keep this number not so high

Figure 3 and 4 illustrates the Split algorithm on a sequence of 8 customers t1 to t8. The first
graph of figure 4 shows the giant tour and the indicated values represent distance of each arc. We
consider the penalty parameter P=200, and the following data:
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We have three agents (table 1) and eight tasks (table 2). Tasks are localized according to figure
3. We will admit that the numbers indicated is the travel time (in minutes) and also the road
distance (in km), to simplify the example. For example, if ”5” is indicated, that means it takes 5
min to travel this 5-km long.

Name Availability Skills

A1 8-12h and 14-18h V and B
A2 8-10h and 14-18h V and R
A3 14-18h V and R

Table 1: Three agents

Name Time window Duration Skills needed

t1 8-12h 60min V
t2 14-18h 10min V
t3 8-12h 20min R
t4 8-12h 30min V
t5 14-18h 30min B
t6 14-18h 60min V
t7 8-12h 60min V
t8 14-18h 90min R

Table 2: Eight tasks

Fig. 3: Giant tour representation

D

t1

t2

t3

t4

t5

t6

t7

t8

56
20

18

7
5

5

10

15

50

13

7

40

7

8

The first step is to create the auxiliary graph. We represent only feasible trips, and notice only
resources that can perform the task (the constraints of agent availability, task time window, and
compatibility are all satisfied). The cost is based on the road distance. Note that the travel time
and the task duration time are only used to determine if all these tasks can be done by agents.
With this method, we obtain the auxiliary graph given by the figure 4.

Then, we have to find the optimal path in the graph. For this, we propose to use a vector of
multi-labels on each node i (the blue and red text on the figure), to note the previous agents used
until i, the incoming node to i to indicate the previous step, and the cost of the partial path using
the incoming node until i. Also, we have to take into account the possibility to skip a task, and
get the penalty P . The ∅ in the label of node ti, indicates that all tasks in the sequence (D, ...ti)
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Fig. 4: Auxiliary graph for the extended optimal split algorithm

D t1 t2 t3 t4 t5 t6 t7 t8
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∅,t1,400

A1A2,t2,162
A2A3,t2,276
A1,t2,326
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A1, A2

30

A2, A3

126

A1

40

A2

16

A1

10

A1

33

A2

16

A1

are skipped. The multi-label system is mandatory to find the best path. We need to use each agent
only once, so we have to track which agents we used on each step. Moreover, for each step, we don’t
know what path will be part of the optimal solution. By using a vector with labels that indicate
the agents already used and the node of the previous step, we can address these problems. At each
step, we have all possible paths that could be part of the optimal. The node of the previous step
in the label is used to backtrack and to have the final resource affectation once the best path is
found.

Let’s give an example with the label development at node t4. First, we will take paths from
t3. We take labels from t3, add an agent which can do the transition (that means any agent not
already used here). We obtain :

– A1A2 +A3 =⇒ all, t3, 176
– A2A3 +A1 =⇒ all, t3, 290 strictly worse than another solution, removed
– A1 +A2 =⇒ A1A2, t3, 340
– A1 +A3 =⇒ A1A3, t3, 340
– A2 +A1 =⇒ A1A2, t3, 450 strictly worse than another solution, removed
– A2 +A3 =⇒ A2A3, t3, 450
– A3 +A1 =⇒ A1A3, t3, 454 strictly worse than another solution, removed
– A3 +A2 =⇒ A2A3, t3, 454 strictly worse than another solution, removed
– ∅+A1 =⇒ A1, t3, 614 strictly worse than another solution, removed
– ∅+A2 =⇒ A2, t3, 614
– ∅+A3 =⇒ A3, t3, 614
– A1 + ∅ =⇒ A1, t3, 526
– A2 + ∅ =⇒ A2, t3, 636 strictly worse than another solution, removed
– A3 + ∅ =⇒ A3, t3, 640 strictly worse than another solution, removed
– ∅ =⇒ 800

We keep only the best options for each combination of agents. Then, we do the same for the other
transitions. Here, we have only one other transition, and it is only with t2 :

– A1 +A2 => A1A2, t2, 166 better than the existant
– A3 +A2 => A2A3, t2, 280 better than the existant
– ∅+A2 => A2, t2, 440 better than the existant

Finally, all the computed labels for t4 are dominated by the label (A1, A2, t2, 166) because of a
better solution with less agents, so we remove the all other labels of t4,

Note that we only need the best vector for each combination of agents.If a vector uses more
agents, and give less cost (for example, the red vector at t4 in figure 4) we can remove it. Finally,
if a vector is worse than the actual best vector considering all penalties it would get to reach the
end of the graph (that’s the red multi-labels vectors in t5 − 8 in figure 4), it will never be the best
solution, and thus, be removed.
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Finally, we take the best cost at the end node of the graph, and we can backtrack to obtain
the best solution, in purple (t1 and t3 are skipped, giving a 400km penalty). With this, the tasks
are affected as follows :

– A1 does the tasks t4, t5, and t6.

– A2 does the task t7, and t8.

– A3 does only t2
– t1 and t3 are not affected (no purple arrow reach them)

With that algorithm, we can respect the constraints of our problem, while having access to the split
benefits. However, the number of multi-labels vectors really increase with the number of agents.

3.3 Other genetic algorithm components

In this section, we present the common components of the GA-I and GA-S methods. These are
the selection and replacement strategy, as well as the mutation operators. We have proposed two
classical mutation operators, and one mutation operator based on a local search.

Selection and replacement. The selection by tournament has demonstrated it effectiveness
for several transportation problems [1]. The principle is to choose a subset of s individuals from
the population (called the tournament size), and then select the individual in the group which
has the best total cost value. This process is repeated until the number of required individuals
is reached. Initially, the population of N chromosomes is generated completely at random, and
the binary tournament selection procedure (s = 2) is used to ensure the choice of N/2 pairs
of parent candidates for the crossover and mutation process. After the crossover and mutation
process, we have N new offspring. The binary tournament strategy is used again to choose among
the 2N chromosomes. We chose two chromosomes randomly and remove the worst one until the
new population of size N is formed. The best individual will always be retained.

Mutation operators.

– Relocate operator. For the giant tour encoding representation, move one customer i chosen
randomly from its original position to another position selected randomly in the permutation.
For the indirect encoding representation, randomly select a task, randomly assign it to another
interval, and randomly give it a weight to determine its order within the selected interval. An
unrouted task can become feasible, and inversely

– Swap operator.It consists of exchanging the position of two customers i and j in the per-
mutation, or in exchanging the interval and the weight of I and j in the indirect encoding
representation. An unrouted task can become feasible, and inversely

– Local search. The mutation is replaced here by a local search procedure, called with probability
pm, which works on the individual solution instead of the chromosome encoding representation.
Regarding our problem, many local search techniques cannot be applied, because of the time-
window constraints. Some local search algorithms will create non-viable solutions. That’s why
we chose to use extra 2-OPT. An improvement is applied as soon as it has been found. Each
iteration scans all feasible moves between two distinct trips and executes the first improving
move detected. The whole local search stops when no more improvement can be found.The idea
of this local search move is to switch a part of the routes between two workers. An example is
shown in the figure 5. This 2-OPT is thought to not disturb the direction of each subroutes.
Here, we see that u, v and x, y arrows become u, y, and x, v without disturbing other arrows.
The solution obtained can be unsolvable, but the risk is greatly reduced here. Thus, we can
obtain more interesting solutions with this local search. Of course, other methods could be
more effective, but for the scope of this study, we will only test this one.
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Fig. 5: Example of 2-OPT

4 Experimentation

In this section, we report the results of a comparison of 6 Genetic Algorithm implementations on
industrial instances. Let GA-I1 and GA-S1 be the version of the proposed genetic algorithm using
a mutation based on a classical operator (relocate or swap), and GA-I2, GA-S2 use a mutation
based on local search . In order to evaluate the impact of the extended Split, we implemented
a version of GA-S, named GA-SS where the split procedure has been replaced by a sequential
splitting . Two versions of GA-SS are also proposed: GA-SS1 (with classical mutation operator)
and GA-SS2 (with RL-based mutation operator). The sequential splitting involves scanning the
giant tour sequence from left to right, and building a solution with tour delimiters. The sequence
is simply scanned from left to right, an agent is randomly selected from the list of agents, and
tasks are assigned to it in the order of the sequence until the agent is no longer available, or a task
cannot be assigned to it. This process is repeated with a second agent, and so on until all tasks
are assigned or no agent is available. Unassigned tasks in the sequence are considered unfeasible
and will be penalized. All the proposed algorithms been programmed in Python and tested on a
Windows computer, Intel core i9-9880H and 32 Go of RAM. In the following, the instances are
first described, then the obtained results are discussed.

4.1 Presentation of the industrial instances

To test our algorithms, we have access to the réséda’s database, which is the DSO of the UEM
group, from which is also efluid. It contains all tasks done by the company since 2015, including all
data needed to reproduce work days. All industrial instances revolves around the Metz Metropole, a
town in the east of France. All interventions are located on three major areas : Metz, the Moselle,
which forms a 20 km line going south from Metz, and the communal group of Faulquemont,
40km east of Metz. The depot is located at the réséda’s headquarters, in Metz. The agents will
have to travel to Faulquemont or across the Moselle to realize tasks located there.The first area
concentrates around 50% of interventions, the second one 30% and the third one 5%. Others are
placed around and between these three areas. Tasks are either on the morning time window (8-11h)
or the afternoon one (13-16h), and last between 5 and 35 minutes, with half of them between 10
and 12 minutes. They are nos skills for this test.

Table 3 shows 8 industrial cases instances, based on real intervention routes. S1 and S2 corre-
sponds to low-demand routes. S3, S4, S6 and S7 are more aligned to standard demand, while S5
and S8 is are saturated, with a non-sufficient number of agents. We must expect a lot of tasks to
not be fulfilled.

4.2 Numerical results.

We performed several preliminary tests to set the parameters of our algorithms. The selected
mutation operator is relocate for GA-I1, and swap for GA-S1, and GA-SS1, with a mutation
probability pm = 0.7. Versions GA-I2, GA-S2, and GA-SS2 use the local search-based mutation
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operator (2-opt) with probability P ′m = 0.2.The population size is set to 1600 for GA-I1 and
GA-I2, and 160 for others. The stopping criterion is a time limit that has been set to 5 minutes.
It corresponds to the standard industrial use. Table 3 shows the average results obtained for each
algorithm on 10 runs. The value in the columns 4, 5, and 6 indicate the total cost (score) and the
number of non-assigned (noted na) tasks. In practice, each non-assigned task costs 200. That means
that the ”Direct” score for S4 is 255 + 63.8 × 200 = 13015. This very high-cost will ensure that
the algorithm will construct routes with the higher number of tasks possible, even if the resulting
routes is less efficient.

Results show that for all tested GA schemas, the GA with local search of each algorithm
outperforms the version without local search. This is in line with the results of the literature,
which claims the effectiveness of memetic algorithms (GA with RL-based mutation) compared
to classical versions of GA without RL.We can note that the GA with indirect encoding really
benefits from it ( between 15 and 40% better ). Our interpretation is that local search helps to
allocate unnecessary unassigned tasks. The best results are obtained by GA-S2, which uses the
split procedure that we developed specifically for the problem, and the local search as mutation
operator. The impact of split can be measured by comparing GA-S2 with GA-SS2 (improvement
from 3 to 7%), and by comparing GA-S1 with GA-SS1(from 3 to 20 %). For small instances (S1 &
S2), the difference is low (indirect encoding is already efficient on them). But for higher instances
(S3, S4, S6 & S7), the difference widens, and more for saturated instances (S5 & S8). If we use the
total cost, we get 7% of improvement for S4, and 9% for S3. This high improvement is justified
by the non-assigned tasks difference. The results clearly show that GA with indirect coding of [3]
reports the worst results, and affirms the effectiveness of the giant tour encoding representation
combined with the split method. We can explain this by the difficulty that the GAs algorithm with
the indirect encoding have in concentrating good chromosomes. Indeed, indirect encoding and the
associated crossover do not preserve information on task order per agent, so the GA will have
difficulty in preserving good sequences.

Interventions Agents GA-SS1 GA-I1 GA-S1

S1 75 4 69 , 0,0 na 92 , 0,0 na 70 , 0,0 na
S2 109 7 168 , 0,0 na 192 , 0,0 na 167 , 0,0 na
S3 121 8 188, 0,0 na 215 , 0,1 na 188 , 0,0 na
S4 145 10 281 , 0,3 na 403 , 0.9 na 242 , 0,1 na
S5 148 9 1472 , 6,0 na 4349 , 20,3 na 1192 , 4,1 na
S6 152 10 608 , 1,9 na 1047 , 4.1 na 589 , 1.8 na
S7 154 10 788 , 2.8 na 1588 , 6.8 na 769 , 2,7 na
S8 192 8 13015 , 63,8 na 16877 , 83,2 na 12140 , 59,4 na

Interventions Agents GA-SS2 GA-I2 GA-S2

S1 75 4 67 , 0,0 na 76 , 0,0 na 66 , 0,0 na
S2 109 7 165 , 0,0 na 177 , 0,0 na 158 , 0,0 na
S3 121 8 186 , 0,0 na 191 , 0,0 na 180 , 0,0 na
S4 145 10 240 , 0,1 na 305 , 0.4 na 222 , 0,0 na
S5 148 9 1135 , 4,2 na 3694 , 17,1 na 1035 , 3,7 na
S6 152 10 567 , 1,7 na 868 , 3.2 na 530 , 1.6 na
S7 154 10 749 , 2.6 na 1170 , 4.7 na 711 , 2,4 na
S8 192 8 12119 , 59,3 na 14642 , 72,0 na 11281 , 55,1 na

Table 3: Comparison of different implementations of GA

5 Conclusion

In this paper, we presented a concrete industrial case of the technician routing problem, raised by
efluid, a company specialized in the management of an energy distribution network. We proposed a
memetic algorithm, named GA-S2, using a giant tour representation of the solution, a local search as
mutation operator, and adapted the split procedure to handle the specificities of our problem. This
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type of approach which associates a memetic algorithm using a representation of the solution as a
giant tour, with an optimal procedure for splitting this giant tour into feasible trips, also known as
order-first split-second MA based approach, has already proved its effectiveness on several variants
of VRP. The aim of this paper was to confirm this statement on real instances in the context
of energy distribution system operator. We also compared the GA with giant tour representation
with another indirect coding representation proposed by [3], which also proved its effectiveness on
real WRSP instances, a problem very close to our case study The results showed that the indirect
coding versions of GA were not competitive with GA using a giant tour representation enconding,
even with the use of a very simple sequential split method. This confirms that the association of
optimal split with MA is very successful for TRSP, as shown in the literature on several variants of
VRP. We are currently working on further enhancing the GA-S2 schema (the GA based on optimal
split and local search), by integrating several neighborhoods in the local search, as well as various
diversification techniques. Our aim is to compare our method with literature approaches developed
for problems similar to our industrial case, more specifically we want to obtain the instances of [3]
to extend the comparative analysis.
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Abstract. This paper introduces a hyperheuristic, which is supposed to be used as a tuning tool of
generalized swap strategy suggested for Pareto front approximation. Pareto front as a small subset of
all feasible solutions is searched for whenever the solved location problem combines two contradictory
criteria. The quality of obtained results will be evaluated based on comparing the complete Pareto
front to its approximation. The used problem instances correspond to real systems established in self-
governing regions of Slovakia.

1 Introduction

Almost each researcher who deals with heuristic implementations has to face the problem of finding
proper values of the heuristic parameters. The process of heuristic tuning is said to demand for the same
time as the heuristic development itself [7]. In this contribution, we focus on an elementary neighbor-
hood search heuristic used as a substantial part of sophisticated methods for location problem solving. A
solution of the location problem is given by a list of facility locations selected from a set of all possible
facility locations [1, 2, 3, 5, 6, 8, 10, 17, 21]. A neighborhood search heuristic inspects a neighborhood
of a given current solution, where the neighborhood of the current solution is defined as a set of all
solutions, which can be obtained by performing exactly one of the permitted operations with the cur-
rent solution. The neighborhood inspection terminates either by move to a new current solution or with
declaration that the process is finished. The neighborhood inspection usually follows one of the two
strategies. The first admissible strategy moves to the first found solution, which is better than the cur-
rent one. The best admissible strategy scans the entire neighborhood and moves to the best admissible
solution found, if one exists.

In [12, 14, 15, 16], there was presented the generalized strategy with two parameters, which enable
to cover a spectrum of strategies including the first and best admissible ones. In this contribution, we
deal with a hyperheuristic, which minimizes an area under step-wise function determined by a set of
non-dominated solutions of a location problem with two conflicting criteria. The hyperheuristic dis-
poses with a set of subordinate routines. These routines are selected individually and applied to solve a
sub-problem, and each routine’s score is updated based on its performance. The higher the score of the
routine, the more often it is chosen.

In the presented study, we use the suggested hyperheuristic for identification of the best setting of
the parameters of the generalized neighborhood search algorithm. The associated computational study
solves the problem of obtaining a good approximation of the Pareto front members, which are public
service system designs evaluated according to two conflicting criteria.

2 Problem of non-dominated solution set optimization

Let Y be a finite set of all problem solutions and let f1 and f2 be objective functions, which describe
two conflicting objectives to be minimized.

We say that solution y ∈ Y dominates solution x ∈ Y if f1(y) ≤ f1(x) and f2(y) ≤ f2(x) hold. A sub-
set PF ⊂ Y of noPF mutually non-dominated solutions p1, . . . ,pnoPF is called Pareto front, if each
element of Y is dominated by at least one solution of PF . A subset APF ⊂ Y of noAPF mutually non-
dominated solutions a1, . . . ,anoAPF is denoted as a relevant approximation of the Pareto front if a1 = p1
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and anoAPF = pnoPF . In the further text, we assume that the elements of APF and PF are ordered in-
creasingly according to the values f2(ak).

Coming out of a given approximation APF and objective functions f1 and f2 a function q(t) can be
defined on the interval [ f2(a1), f2(anoAPF )] by the following prescription: q(t) = f1(ak)– f1(anoAPF )
for t ∈ [ f2(ak), f2(ak−1)] and k = 1, . . . ,noAPF–1.

Integral of the function over the interval [ f2(a1), f2(anoAPF )] will be denoted by Q(APF) and it can be
computed according to (??). It corresponds to the hatched area in Fig. 1.

Q(APF) =
∫ f2(aNOAPF )

f2(a1)
q(t)dt =

NOAPF−1

∑
k=1

(
f1
(

ak
)
− f1

(
anoAPF

))(
f2
(

ak+1
)
− f2

(
ak
))

(1)

Fig. 1. Pareto front and its area

The problem of finding such APF which minimizes Q(APF) will be called APF optimization problem.
It is obvious that Pareto front is the optimal solution of the problem. Nevertheless, determination of the
Pareto front asks for usage of exact tools of the mathematical programming, what is connected with
enormous demand for computational time. That is why we accept a heuristic approach to the APF op-
timization under assumption that the approximate solution will be obtained in acceptable time and the
difference Q(APF)–Q(PF) will be sufficiently small.

The suggesting ordering of APF solutions enables fast decision on a candidate x ∈ Y whether it can
or cannot decrease the current Q(APF). Thus a procedure Improvement(APF,x) can be easily imple-
mented. The procedure returns a positive value of Q(APF) decrement if the candidate x is not dominated
by any solution of the current APF and it returns the value of zero in the opposite case. The procedure
also updates APF .

3 Hyperheuristic and subordinate routines

The presented neighborhood search algorithm with generalized strategy inspects neighborhood N(y) of
a current solution y consists of all feasible solutions, which can be obtained by performing one swap
operation with the current solution y. The swap operation performed with a solution of the location
problem given by a set of selected locations replaces one of the selected locations by one location,
which does not belong to the selected ones.

The algorithm processes the inputs, which consists of an initial solution y and an initial APF , which is
improved during the algorithm run by the procedure Improvement(APF,x). The next inputs are param-
eters T hreshold and MaxNo, where the value of T hreshold represents a limit, which must be exceeded
by APF improvement to be considered admissible. The integer MaxNo gives the number of step-by-step
found admissible improvements, from which the best one is selected.

The algorithm description contains the following procedures.

Procedure Improvement(APF,x) returns the value of Q(APF) decrement and updates APF .
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Function getSol(NN(x)) withdraws one solution from the set NN(y) of solutions neighboring the solu-
tion y.

GeneralizedNS(y,APF,T hreshold,MaxNo)

1. Construct NN(y) as a set of all non-fathomed neighboring solutions of y. Set NoAdm = 0 and
BestImp = 0.

2. If NoAdm=MaxNo or NN(y) is empty, then continue with 4, otherwise determine x= geSol(NN(y)),
set Imp = Improvement(APF,x) and continue with 3.

3. If Imp > T hreshold, then perform: NoAdm = NoAdm+1 and if Imp > BestImp, then BestImp =
Imp and xbest = x. Continue with 2.

4. If T hreshold < BestImp, then redefine y = xbest and go to 1, otherwise terminate.
Performance of algorithm GeneralizedNS depends on parameters T hreshold and MaxNo. If parameter
T hreshold is set at the value of zero and parameter MaxNo equals to one, the algorithm will per-
form according to the strategy ”first admissible”. If parameter MaxNo will be near to cardinality of the
neighborhood, then strategy ”the best admissible” will be applied. Each setting of the pair of parameters
causes different performance of the neighborhood search algorithm.

The proper setting the algorithm parameters is matter of this paper. This fact found by preliminary ex-
periments inspired the idea of using a selective hyperheuristic as a teaching tool for this purpose.

The suggested selective hyperheuristic disposes with a set R of routines. A routine r ∈ R has its own
score denoted Score(r). The score is initialized by a small positive value at the beginning of the hy-
perheuristic and also InitialQ is determined as Q(APF0), where APF0 consists only of two members
p1 and pnoPF. The algorithm GeneralizedNS with setting T hreshold(r) and MaxNo(r) represents the
routine r. Let y be an input solution and r(y) be the resulting solution of the routine applied to y. Let
f (r(y)) denote the difference of O(APF) before and after performance of the routine r. The following
steps can briefly describe the core of the suggested selective hyperheuristic.

1. Transform Score values to probabilities assigned to the individual routines according to (2). Com-
pute cumulated probabilities using the formula (3). Then, generate a random number rn from the
interval [0, 1] and determine minimal r0 that rn ≤CumProb(r0).

2. Determine Q0 = Q(APF). Perform GeneralizedNS(y,APF,T hreshold(r0),MaxNo(r0)) and com-
pute Q1 = Q(APF).

3. Update Score(r−0)4accordingtoScore(r0) = Score(r0)+(Q0–Q1)/InitialQ.

Probability(r) =
Score(r)

∑k∈R Score(k)
(2)

CumProb(r) =
r

∑
k=1

Probability(k) (3)

The above hyperheuristic includes a state of learning represented by the structure Score. This suggested
hyperheuristic core has to be embedded into the process described in the next section and, in addition,
it must enable transition of experience quantified by Score to the next runs.

4 Process of gradual refinement

The construction of a Pareto front or at least of its good approximation may be performed in many
different ways, which can be based also on the decrementing neighborhood search algorithm. One of
possible strategies applicable in the NDSS creation process is the schema of its gradual refinement [15,
19, 20]. The process starts with two-element initial NDSS consisting of the most left and the most right
bordering solutions of the Pareto front. These bordering solutions can be computed easily and their
obtaining does not usually take too long time. Mentioned refinement process is performed repeatedly.
It means that processing of one round brings such a NDSS set, which can be used as in input set for
the following inspection process. Since the embedded decrementing algorithm may use random activ-
ities, the results of a process executed multiple times may vary. Therefore, the inner cycle is nested
into time-controlled cycle, which repeats the inner cycle up to the moment, when the given time limit
elapses. In other words, the refinement of NDSS repeats until given times restriction stops the algorithm
performance.
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The gradual refinement procedure processes the input NDSS solution by solution following the men-
tioned order y1, . . . ,ynoNDSS of NDSS solutions. If yk is processed, DecrementingNeighborhoodSearch
algorithm is applied in the studied case. As NDSS can change during one run of the algorithm, the solu-
tion corresponding with the k-th position may also change. If it happens, the algorithm is applied once
again to this new solution yk, otherwise the following solution yk +1 is processed. If k = noNDSS−1,
the basic refinement process terminates.

5 Computational study

5.1 Used tools and benchmarks

This section is devoted to a little computational study, in which real-world data were used. The main
goal of the numerical experiments is to study the accuracy of suggested heuristics for Pareto front ap-
proximation. First, let us specify software and hardware tools and used dataset.

As the main software tool, the NetBeans IDE 8.2 was applied. This common development kit enables
to write algorithms and application in Java language. As far as hardware is concerned, a common PC
with the Intel® Core™ i7 4790 CPU@3.60 GHz processor and 8 GB RAM was used.

The dataset of problem instances was taken from our previous research, the results of which can be
found except many other papers in [9, 11, 12, 13, 14, 15, 16, 19, 20]. In all of them, two criteria are de-
noted as so-called system and fair objectives respectively. While the system criterion f1 minimizes the
distance from an average user to the nearest available source of service, the fair objective f2 minimizes
the number of those, whose distance from the nearest located facility exceeds given limit. More details
about the concrete forms of used optimization criteria can be found in the list of referenced papers,
mainly in [4, 11, 13, 18]. Since the same dataset was used by our colleagues to verify the exact ap-
proach for Pareto front determination published in [9, 11], the quality of suggested heuristic approaches
to Pareto front approximation can be easily evaluated.

Table 1 summarizes the basic benchmarks properties. For each region denoted by its abbreviation, we
report the cardinality of the possible service center candidates set denoted by |I| and the number p of
facilities to be located. The right part of the table brings the cardinality of the complete Pareto fronts in
the column denoted by |PF | and the corresponding value of Q(PF).

Table 1. Benchmarks sizes and the exact Pareto fronts characteristics

Region |I| p |PF | Q(PF)

BA 87 14 34 569039
BB 515 36 229 1002681
KE 460 32 262 1295594
NR 350 27 106 736846
PO 664 32 271 956103
TN 276 21 98 829155
TT 249 18 64 814351
ZA 315 29 97 407293

5.2 Numerical experiments

This subsection is used to present the results of numerical experiments, which were aimed at studying
the accuracy of Pareto front approximation by the suggested hyperheuristic. It must be noted that the
mentioned hyperheuristic covers several subroutines, which are chosen by their score and probability
distribution. At the beginning, the score of all subroutines was set to one. It means, that the probability
of each subroutine is the same and it is distributed uniformly among all strategies. The obtained results
are summarized in Table 2, which takes the following structure. Each row of the table corresponds to
one solved instance corresponding to real Emergency Medical Service system in a given region. The
regions are identified by the abbreviation of their name. Such a notation was used also in our previous
case studies. Despite the fact that the computational process of suggested hyperheuristic was restricted
to five minutes, we report also the computational time in seconds in the column denoted by CT . The
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column denoted by |APF | brings the information about the cardinality of the resulting APF set of
non-dominated system designs. In other words, it is the number of found solutions approximating the
original Pareto front. The last two columns are the most interesting from the viewpoint of the results
accuracy. Q(APF) represents the absolute size of the polygon formed by the members of APF . For
more details, see Fig. 1. Since the absolute and big values are not suitable for comfortable comparison,
the quality of obtained results is demonstrated also by the value of so-called gap. Gap is defined in
percentage and it can be evaluated by the expression (4).

gap = 100∗ Q(APF)−Q(PF)

Q(PF)
(4)

Since the suggested hyperheuristics is based on a selection of a partial subroutine to be applied, random-
ness and probability distribution play an important role. That is why we run the solving algorithm ten
times for each problem instance. Then, the following Table 2 contains the average values of all studied
characteristics.

Table 2. Results of numerical experiments

Region CT [s] |APF | Q(APF) Gap [%]
BA 300.04 33.00 577393.00 1.47
BB 317.98 209.20 1012436.80 0.97
KE 316.95 247.80 1332685.20 2.86
NR 304.26 100.90 743297.10 0.88
PO 335.48 269.00 983641.30 2.88
TN 301.46 92.00 841167.40 1.45
TT 300.76 62.00 817379.50 0.37
ZA 302.49 93.80 407981.40 0.17

Presented results of numerical experiments have proved the suitability of the hyperheuristic for prac-
tical usage. As we can see in the last column of Table 2, the average values of gap do not reach high
values, on the contrary, they indicate, that the approximation of the complete Pareto front is very good.
From the practical point of view, the hyperheurisitc is able to bring a satisfactorily accurate result in
five minutes.

When studying particular subroutines and their probability distribution, one can not choose the best one,
because all of them have showed usefulness. On the other hand, presented method deserves future deep
analysis to accelerate the computational process or to improve the algorithm to bring better results.

6 Conclusions

Location science covers many subfields, in which plenty of different combinatorial problems are solved
by means of mathematical programming. This contribution was aimed at a specific class of discrete
network location problems with two conflicting criteria. When there are more than one objective to be
optimized, a Pareto front seems to be a sufficient output for public authorities to make the final decision.

Obtaining the complete Pareto front proved to be a time consuming challenge and that is why many
scientists and other experts in computation or algorithms development pay attention to searching for
effective heuristic methods.

In this paper, we focused on a hyperheuristic, which is supposed to be used as a tuning tool of general-
ized swap strategy suggested for Pareto front approximation. Presented results of performed numerical
experiments have shown that the hyperheuristic is able to approximate the original Pareto front in very
satisfactory way, which means that the average gap did not exceed one percent in most cases.

Development in Applied Informatics and Operations research is a never-ending story. Achieving one re-
search goal usually brings new challenges. Therefore, future research direction in the field of bi-criteria
location science could be aimed at the development of various algorithms for Pareto front approxima-
tion, which could be based on machine learning and artificial intelligence.



6 M. Kvet, J. Janáček
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12. Janáček, J., Kvet, M. (2021). Swap Heuristics for Emergency System Design with Multiple Facil-
ity Location. In: Proceedings of the 39th International Conference on Mathematical Methods in
Economics, 2021, pp. 226-231.
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14. Janáček, J., Kvet, M. (2022). Adaptive swap algorithm for Pareto front approximation. In: ICCC
2022: 23rd International Carpathian Control conference, Sinaia, Romania, Danvers: IEEE, 2022,
pp. 261-265.
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Abstract. The scientific content of this paper focuses on service system optimization. The main goal of
presented research consists in extending current portfolio of solving approaches for such discrete loca-
tion problems, in which two contradictory objectives are to be optimized. Due to different optimization
criteria, a small subset of feasible solutions respecting a specific non-dominance property needs to be
searched for. Obtaining the complete Pareto front is a time-consuming challenge. This phenomenon has
led to the development of various metaheuristic approaches, which are able to bring an approximation of
the original Pareto front. Mentioned approximate approaches may be sensitive to different parameters.
That is why we pay attention to artificial intelligence for metaheuristic parameter settings. Suggested
algorithm was tested on middle-sized benchmarks derived from real world. The obtained Pareto front
approximations are compared to the complete sets of non-dominated solutions, which are available.

1 Introduction

Metaheuristics are often used to solve complex optimization problems, where application of exact meth-
ods of mathematical programming is either impossible or asks for inacceptable amount of computational
time. If exactly optimal results are not required, the strong side of metaheuristic approaches is presented
by flexibility concerning model of the solved problems. Metaheuristic approaches can accept non-linear
models and also absence of function continuity or existence of derivations in model formulae. Besides
of impossibility to reach exactly optimal solution, the weak side of a bit more complex metaheuristic is
dependence of their efficiency on metaheuristic parameter setting. The process of finding suitable values
of metaheuristic parameters is generally called tuning of the metaheuristic and it is generally assumed
that it asks approximately for the same time as the metaheuristic construction [8, 9]. The search for a
good approximation of Pareto front of public service system designs represents a very computational
time demanding task as shown in [10, 12, 14].

The public service system design problem [1, 2, 3, 5, 6, 7, 11, 19, 25] is a typical problem, quality of
which is often assessed from several points of view. The often used couple of conflicting criteria are so
called system and fair criteria. The first criterion is formulated as an average response time of the system
to a user’s demand for service and the second one reflects minority calls for fair access to service. Due
to incomparability of the two criteria, it is impossible to transform the pair of criteria to an optimization
problem with one objective function and thus a meaningful result of the problem solving can be Pareto
front or a good approximation of it. Such a result can help to a system administrator to finish a negoti-
ation with public representatives and determine a final design of the implemented public service system.

Within this paper, we focus our efforts on a special metaheuristic minimizing a difference between
the exact Pareto front and a Pareto front approximation. Instead of tuning process of the metaheuristic
parameters, we develop and test an adaptive process of parameter setting and implement it as a meta-
heuristic enlargement.

The remainder of this paper is organized into the following five sections. Section 2 aims at approxima-
tion of the Pareto front of public service system designs, where two conflicting criteria are taken into
account. Section 3 focuses on a method of improving Pareto front approximation quality. In Section 4,
we concentrate on description of adaptive algorithm for setting parameter of metaheuristic optimizing
the Pareto front approximation. The findings from actual numerical experiments are presented in Sec-
tion 5. The conclusions of the work, which are described in Section 6, contain the acquired results and
recommendations for further study.
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2 Quality measure of Pareto front approximation

We consider a mathematical programming problem with two objectives f1 and f2 to be minimized. The
Pareto front of the problem solutions is a set of mutually non-dominated solutions, which satisfy the
cause that if an arbitrary feasible solution x is chosen, then at least one element y of the Pareto front
exists that inequalities f1(y)≤ f1(x) and f2(y)≤ f2(x) hold. In other words, we say that y dominates x.

If he set Y of all feasible solutions of the considered problem is finite, then the Pareto front must be
also finite and it contains one element with minimal value of the objective function f2 and the element,
which minimizes the objective function f1. These two elements of the Pareto front can be called the
most left and most right solutions respectively.

As the Pareto front determination is a hard computational problem, we concentrate our effort on estab-
lishing a good approximation of it. The approximating set of non-dominated solutions (NDSS) will be
represented by a sequence of noNDSS solutions y1, . . . ,ynoNDSS ordered according to increasing values
of f2. To obtain a relevant approximation, the bordering solutions y1 and ynoNDSS must be determined
to be very close to the most left and most right solutions of the Pareto front as concerns the values of f1
and f2. Under these assumptions, the quality of the approximation NDSS can be measured by so called
NDSS Area computed according to the expression (1).

noNDSS−1

∑
k=1

(
f1
(

yk
)
− f1

(
ynoNDSS

))(
f2
(

yk+1
)
− f2

(
yk
))

(1)

The identical formula can be used to compute the area of the Pareto front (PF Area) and it holds that
the PF Area is a lower bound of NDSS Area.

Considering the order of NDSS solutions, it can be easily implemented an algorithm, which decides in
noNDSS steps whether arbitrary feasible solution x is dominated by an element of the current NDSS or
if it can be included into the NDSS improving the associated NDSS Area. Such algorithm can be used
for step-by-step updating of an initial NDSS whenever a source of candidate solutions is at disposal.

3 Decrementing algorithm for NDSS Area minimization

The suggested decrementing algorithm is based on a neighborhood search, when the inspected neighbor-
hood N(y) of a current solution y consists of all feasible solutions which can be obtained by performing
a permitted operation with the current solution y.

The further described decrementing algorithm uses several auxiliary functions and procedures described
below.

Function getArea(NDSS) returns the area of the input NDSS computed according to (1).

Procedure U pdate(NDSS,x) decides if the solution x will or will not improve the current NDSS and, in
the positive case, the NDSS is updated.

Function WithdrawFrom(NN(y)) chooses a solution of the input set NN(y) of non-fathomed solutions
and withdraws the chosen solution from NN(y).

DecrementingNeighborhoodSearch(y,NDSS,MinDec,T )

1. Construct NN(y) as a set of all non-fathomed solutions of N(y).
2. If NN(y) is empty, then terminate, otherwise determine x =WithdrawFrom(NN(y)), set Area0 =

getArea(NDSS) and continue with 3.
3. Perform U pdate(NDSS,x). If the update is not successful, go to step 2. In the opposite case define

Area1 = getArea(NDSS) and continue with 4.
4. Generate a random number rn from the interval [0, 1] and if rn≤ exp((Area0–Area1–MinDec)/T ),

then redefine y = x and go to 1, otherwise go to 2.

The above algorithm starts from an initial solution y and an initial NDSS, which is step-by-step updated
during the run of the algorithm. This way the associated NDSS Area is gradually minimized. Input
parameters are a threshold MinDec and parameter T known as a temperature in simulated annealing
metaheuristics.
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4 Adaptive algorithm for Pareto front approximation

The decrementing neighborhood search algorithm can be easily embedded into a more complex schema
of NDSS improving. One of such schemes is known as the schema of gradual refinement [15, 16, 17,
23, 24]. The process which follows the schema starts with the two-element initial NDSS consisting of
the most left and most right bordering solutions of the Pareto front. The stepwise refinement process
itself is repeated so that the NDSS that is the result of the performance of one process is used as the
input NDSS for the next application of the process. Because the embedded decrementing algorithm may
use random activities, the results of a process executed multiple times may vary. Thus, the inner cycle is
nested into time-controlled cycle, which repeats the inner cycle up to the moment, when the given time
of the process elapses.

The gradual refinement procedure processes the input NDSS solution by solution following the men-
tioned order y1, . . . ,ynoNDSS. If yk is processed, DecrementingNeighborhoodSearch algorithm is ap-
plied in the studied case. As NDSS can change during one run of the algorithm, the solution corre-
sponding with the k-th position may also change. If it happens, the algorithm is applied once more to
this new yk, otherwise solution yk+1 is processed. If k = noNDSS− 1, the basic refinement process
terminates.

The algorithm DecrementingNeighborhoodSearch depends on parameters MinDec and T . According
to similar processes, the parameter T is periodically changed (heated or cooled) depending on the num-
ber of steps taken. The proper setting of the threshold is matter of our study. The best setting for any
solved problem instance can be hardly found. This fact following from the preliminary experiments
evokes the further presented idea of enlarging the repeated gradual refinement process by an adapting
process, which will be setting the value of MinDec dynamically with respect to experience obtained
during the previous runs of DecrementingNeighborhoodSearch.

Mentioned experience of increase or decrease of the parameter MinDec will be quantified by the param-
eter State, which will be initialized by zero value before the start of the time-controlled cycle. Based on
the value of the state, probability P of increasing MinDec by the increment Delt is determined.

At the beginning of the process, the initial value of probability P is set at 0.5. Before each run of
DecrementingNeighborhoodSearch algorithm a random trial in favor of MinDec increase is performed
with probability P. If the trial succeeds, then MinDec is increased by Delt, else MinDec is decreased by
the same value. The value of MinDec before the change is saved as MinDec0. The value of the difference
between NDSS Areas before and after the run of DecrementingNeighborhoodSearch is computed and
denoted by Di f Area. The value of State is updated according to (2).

State = αState+β sign((Di f Area−MinDec0)(MinDec−MinDec0)) (2)

The probability value P is updated according to (3).

I f State <−1thenP = 0

I f State > 1thenP = 1

otherwiseP = (1+State)/2

(3)

5 Numerical experiments

5.1 Description of the solved problem

The discrete location problem, which we are interested in, follows from the weighted p-median formu-
lation. To describe the problem by means of linear mathematical programming, let I represent the finite
set of candidates for locating a facility or any other source, from which the associated service could be
provided. The optimization problem consists in searching for the optimal selection I1 of exactly p ele-
ments from I so that the given objective f (y) takes the best possible value. The decision about locating
a service center at any location i from I is modelled by a binary variable yi. In case that the location i is
selected for establishing a service center, the variable takes the value of one. Otherwise, it equals zero.
The general formulation of the problem may take the form of (4).

min{ f (y) : I1 ⊂ I, |I1|= p} (4)
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The set I1 may be implemented as a list of indexes corresponding to the original set I or it can be de-
scribed by a vector y of location variables yi for each i from I.

Complexity and solvability of the problem depends on the accuracy, with which the objective function
f (y) of any solution y describes the relations in real systems. In this paper, we assume that the mod-
elled system yields emergency service to all inhabitants of a served region and these inhabitants live in
communities, which form the set J. Obviously, the set J can equal the previously introduced set I. Each
element j of J is connected with a weight coefficient b j. This coefficient may take several different
meanings, i.e., the number of inhabitants, expected frequency of randomly occurring demands, etc. The
response time for satisfying the demand at the point j is computed as an expected traversing time from
the assigned center to the location j. As the nearest service center may be currently unavailable due
earlier assigned demands, the probabilities q1, . . . ,qr are introduced to describe the situations that the
nearest service center is the closest available one (q1) or that the second nearest center is the closest
available one (q2) and so on up to the r-th situation [18, 20, 21]. If ti j denotes the traversing time from a
candidate location i to a community location j and if the result of the operator mink{ti j : i ∈ I1} returns
the k-th minimal value of ti j for i ∈ I1, then the average response time is proportional to the value of the
expression (5) for the set I1 of chosen service center locations.

f1 (I1) = ∑
j∈J

b j

r

∑
k=1

qkmink
{

ti j : i ∈ I1
}

(5)

Presented function f1(y) is often denoted as so-called system criterion of the design.

When designing a service system for a longer period and when the strategic decisions about new center
locations are to be made, then not only the system criterion play a role. Except minimization of the
average response time, fairness should be also taken into account.

Fair criteria evaluate the disutility perceived by the worst placed minority of the population provided
with the associated service [4, 22]. Within this study, the fair criterion will be computed as the number
of clients’ demands, for which the response time from the nearest service center is higher than a given
threshold Tmax. The associated objective function f2(I1) can be expressed by (6).

f2 (I1) = ∑
j∈J

b jmax
{

0,sign
(
min

{
ti j : i ∈ I1

}
−Tmax

)}
(6)

Mentioned criteria f1 and f2 are in conflict as discussed in [10, 12, 14]. Therefore, a Pareto front of
solutions needs to be produced instead on one resulting system design.

5.2 Benchmarks and solving tools
As far as the technical support like hardware and software tools are concerned, we used the program-
ming language Java within the NetBeans IDE 8.2 environment. The experiments were run on a common
PC equipped with the Intel® Core™ i7 11700KF CPU@3.60 GHz processor and 16 GB RAM.

The dataset of problem instances was taken from our previous research, the results of which are available
in [13, 14, 15, 16, 17, 23, 24]. In the used dataset, the road network of Slovak self-governing regions was
taken as a source of input data for the studied mathematical models. It must be noted that all network
nodes represent both the set of candidates for service center locating and the set of inhabitants being
provided with service. As the objective function f1 follows from the concept of so-called generalized
disutility, the parameter r was set to 3. The coefficients qk were set so that q1 = 77.063, q2 = 16.476 and
q3 = 100− q1 − q2. These values were obtained from a simulation model of the Emergency Medical
Service system in Slovakia [18]. Parameter Tmax used in the fair objective function described by the
formula (6) was set to the value of 10 minutes [15, 16, 17, 23, 24].

The properties of the benchmarks are outlined in Table 1 below. The problem size for each region is
determined by the cardinality of the set of potential service center locations denoted by the symbol |I|
and by the number of located centers denoted by p. The right part of the table contains the basic char-
acteristics of the complete Pareto fronts. Symbol NoS denotes the number of non-dominated elements.
The last column denoted by Area contains the value of PF Area.

5.3 Results of experiments
This subsection is devoted to the results of numerical experiments, in which the suggested heuristic
approach combined with artificial intelligence will be studied.
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Table 1. Benchmarks sizes and the exact Pareto fronts characteristics

Region |I| p NoS Area
BA 87 14 34 569039
BB 515 36 229 1002681
KE 460 32 262 1295594
NR 350 27 106 736846
PO 664 32 271 956103
TN 276 21 98 829155
TT 249 18 64 814351
ZA 315 29 97 407293

An individual experiment was performed in such a way that for each problem instance, ten runs of
the algorithm were performed. The following tables contain the average results of ten algorithm runs.
While Table 2 contains the first half of results, i.e. average values for the self-governing regions of
Bratislava, Banská Bystrica, Košice and Nitra, Table 3 summarizes the results for the remaining re-
gions, i.e., Prešov, Trenčı́n, Trnava and Žilina.

The structure of both tables takes the following form. Each column of the table corresponds to one
benchmark denoted by its abbreviation. Each row of the table contains one studied characteristic. It
must be noted that the algorithm was run for base = 1, which means no heating. The parameter α used
in the expression (2) was set to the value of 0.8. Initial temperature T took the value of 1000. Obvi-
ously, we have run the algorithms also with different values of suggested parameters, but the obtained
results did not differ significantly. That is why we report only the results for mentioned settings of the
parameters. On the other hand, performance of the algorithm and the impact of different parameters on
the result accuracy deserves future research and deep analysis.

Let us return now to the results reported in Table 2 and Table 3. The resulting characteristic interest-
ing for future analysis are the following: The row denoted by MinDecrem contains the resulting value
of minimal decrement, which was originally set to 0.1 percent of the NDSS Area. The second line is
dedicated to the resulting values of state used in the expression (3). Even if one algorithm run was
limited to 5 minutes of computation, we report the computational time in seconds in the row denoted by
CT . Symbol noNDSS denotes the number of non-dominated solution found to approximate the original
Pareto front. It can be understood also as the cardinality of the resulting NDSS. The row denoted by
noTimeRuns brings the number of algorithms runs within given time limit. Each run means process-
ing the current set of found non-dominated solutions. The last row of each table represents the most
important result. Instead of comparing absolute values of areas formed by the complete Pareto front
and its approximation by NDSS, we evaluated the accuracy by so-called gap. This value expresses the
relative difference in percentage, in which the area of the complete Pareto front is taken as the base. Its
mathematical formulation takes the form of (7).

gap = 100∗ NDSS Area−PF Area
PF Area

(7)

Table 2. Results of numerical experiments for Bratislava, Banská Bystrica, Košice and Nitra

BA BB KE NR
MinDecrem : 1.447 0.372 0.433 0.331
State : 0.059 -0.051 0.026 0.051
CT [s]: 300.047 312.857 304.589 302.067
noNDSS: 32 219 251 102
noTimeRuns: 2472.1 4 5 36.2
gap [%]: 4.10 0.65 2.78 6.07

6 Conclusions

This research paper was aimed at the development of such heuristic approach to Pareto front approxima-
tion, in which elements of artificial intelligence are incorporated. Pareto front approximation methods
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Table 3. Results of numerical experiments for Prešov, Trenčı́n, Trnava and Žilina

PO TN TT ZA
MinDecrem : 0.259 1.089 0.935 0.511
State : -0.068 -0.116 -0.05 0.052
CT [s]: 369.516 301.225 300.815 304.246
noNDSS : 264 84 62 91
noTimeRuns : 4 66.1 191.3 45.4
gap [%]: 1.23 0.85 0.65 0.22

are necessary whenever there are more contradictory objectives to be optimized at the same time. This
way, we have tried to extend the state-of-the-art solving approaches to bi-criteria location problems.

Based on the achieved results of performed numerical experiments, we have found that the heuristic
supported by artificial intelligence is able to bring a good approximation of the complete Pareto front in
given time limit of five minutes. Even if the heating process was not activated, the obtained results are
of a very satisfactory accuracy. The average gap was smaller than one percent in most cases, but there
were some exceptions which should be analyzed more deeply to find possible ways for improvement of
the associated solving algorithm. On the other hand, the main goal of this study has been fulfilled and
the proposed heuristic can be easily applied to such location problems, in which two conflicting criteria
need to be met simultaneously.

Future research in this location field could address the development of different advanced approaches
suitable for bi- or even multi-criteria decision problems. Special attention should be paid to the deep
analysis of the proposed method in order to study possible impact of various parameter settings on the
quality of obtained results measured by their accuracy.

Acknowledgements

This work was supported by the research grants VEGA 1/0216/21 ”Design of emergency systems with
conflicting criteria using artificial intelligence tools”, VEGA 1/0077/22 ”Innovative prediction methods
for optimization of public service systems” and VEGA 1/0654/22 ”Cost-effective design of combined
charging infrastructure and efficient operation of electric vehicles in public transport in sustainable cities
and regions”. This work was also supported by the Slovak Research and Development Agency under
the Contract no. APVV-19-0441.

References

1. Ahmadi-Javid, A., Seyedi, P. et al. (2017). A survey of healthcare facility location, Computers &
Operations Research, 79, pp. 223-263.

2. Avella, P., Sassano, A., Vasil’ev, I. (2007). Computational study of large scale p-median problems.
Mathematical Programming 109, pp. 89-114.

3. Brotcorne, L, Laporte, G, Semet, F. (2003). Ambulance location and relocation models. Eur. Journal
of Oper.Research, 147, pp. 451-463.
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14. Janáček, J., Kvet, M. (2021). Emergency Medical System under Conflicting Criteria. In: SOR 2021
Proceedings, pp. 629-635.
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1 Introduction

This paper deals with a new variant of the non-preemptive unrelated parallel machines scheduling
problem with setup times (UPMS-SDST). In this context, the setup processing is not operated
automatically such that a common server is used as an extra shared resource to operate the setup
processing between each two jobs assigned to the same machine. For this, we consider the so-called
job-sequence dependent setup times which means that the setup times depend on only the sequence
of jobs. This problem is known under the name of unrelated parallel machines scheduling problem
with a common server and job-sequence dependent setup times (UPMS-CS-SDST) [27]. It can be
formally defined as follows. We consider a set of unrelated parallel machinesM . There does not exist
a dependency between these machines such that each machine i ∈ M has its proper characteristics
as speed, configuration, energy consumption and quality of work [27]. Notice that the machines M
are available along a set of Tmax consecutive periods denoted by T = {1, 2, ..., Tmax − 1, Tmax}.
Let N be a set of n jobs numbered from 1 to n such that each job k is characterized by

– a subset of qualified machines Mk ⊆ M that are capable of processing the job k,
– a processing-time pki ∈ N on each machine i ∈ M such that pki = +∞ for each non qualified

machine i ∈ M \Mk.
– a priority factor wk ∈ R∗,
– a set of setup-times sjk ∈ N of job k after job j ∈ N0 \{k} if the two jobs k and j are assigned to

the same machine that is to say the job-sequence dependent setup times, where N0 denotes the
set of jobs in N with an additional dummy-job 0 (i.e., N0 = N ∪{0}) such that the dummy-job
0 precedes each first job assigned to each machine.

As mentioned before, a common server is used to manage the setup operations between each pair
of consecutive jobs (j, k) assigned to the same machine. Moreover, the common server can be
unavailable at some periods in T . For this, we consider a binary parameter at which equals to 1
if the server is available at period t, and 0 if not. However, the jobs N are available in all periods
of T . The problem consists in assigning each job k to one of its qualified machine in Mk while
satisfying the following technological constraints

– each job k must be processed only one time by one of its qualified machines i ∈ Mk. Moreover,
pki consecutive periods are assigned to each job k if it is assigned to machine i (processing-time).
As a consequence, each job k has one completion period of processing in T (non-premption of
processing),

– sjk consecutive periods are assigned to each job k if it is processed immediately after a job j
over the same machine (setup-time),

– the common server cannot start the setup processing for a job if it hasn’t finished the setup
for another job yet (non-premption of setup),

– each machine can handle at most one job at each period such that two jobs cannot be processed
at the same period on the same machine (non-overlapping of processing),

– the setup operation cannot be ensured at period t if the common server is not available at
period t. Moreover, the common server can ensure the setup operation of at most one job at
period t (non-overlapping of setup),
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– the common server interrupts the setup processing for a job when it becomes unavailable.
However, it can resume the setup processing of this job when it becomes available (server
availability).

The objective is to minimize the total weighted completion time of processing for the n jobs.
From a practical point of view, the UPMS-CS-SDST problem arises when planning production
and scheduling for some industrial flexible manufacturing systems. It appears in some applications
related to the production of some mechanical parts of automobiles, hydraulic and electrical sectors
[27] in the context of Industry 4.0. In this context, optimization of these real modern systems is a
real challenge such that effective scheduling is a key issue to well manage the different resources
and improve productivity of manufacturing systems.
The UPMS-CS-SDST problem is NP-hard in the strong sense [27]. The main contributions of this
paper is as follows.
We first formulate the problem as a mixed integer linear program (MILP), and further devise an
exact algorithm based on a branch-and-cut (B&C) algorithm to solve the problem. Due to the
complexity of the problem, we propose a metaheuristic based on an iterated local search (ILS)
algorithm [21] for solving the problem. Using this, we provide several matheuristics based on a two
stage algorithm: ILS first and MILP last. We also carry out a comparative study between these
methods and show the effectiveness of our approach using small-sized instances and large-sized
instances.
The rest of this paper is organized as follows. In Section 2, we present some related works that have
been well studied in the literature. In Section 3, we present a MILP for the problem. We introduce
the ILS in Section 4. Matheuristics are presented in Section 5. We then present an extensive
computational study using different classes of instances. Finally, we summarize our results and
future outlook in Section 7.

2 Related Works

In the most general statement, the classical unrelated parallel machines scheduling problem (UPMS)
has been well studied in the literature. The setup times are not considered in this case. It has been
shown to be NP-hard [19]. Several exact algorithms have been proposed to solve the problem
[1][8][23][22][33]. Despite the NP-hardness of the problem, heuristics and metaheuristics have also
been required to solve the problem [14][33]. On the other hand, some approximate algorithms with
good performance guarantee have been developed for solving the problem [16][19][24][32].
Notice that for some works, the setup-time has been considered as a part of processing-time. Here,
we focus on the works that considered the processing and the setup operation separately. This is
related to the UPMS-SDST problem. For this, we consider sequence-dependent setup times such
that a setup operation is needed after each completion of processing of a job and before each
starting of processing of another job assigned to the same machine. In this context, each machine
is regulated to process the next job. This needs a setup time which depends only on the pair of
consecutive jobs who share the same machine. This has first been studied by Allahverdi et al. [2].
Several exact algorithms have been proposed to solve the UPMS-SDST problem. They are based
on branch-and-bound algorithm [29], branch-and-check algorithm [13], branch-and-price algorithm
[25] and Bender decomposition [30]. However, these approaches have been shown to be less efficient
when using large-sized instances of the same problem.
For this, heuristics [5][20][26] and metaheuristics have been used to solve the UPMS-SDST prob-
lem. Rabadi et al. [26] presented a greedy randomized adaptive search procedure to solve the
problem. A simulated annealing has been used by Radhakrishnan and Ventura to solve the same
problem [28]. Helal et al. [17] presented also a tabu search algorithm for the problem. On the other
hand, some population-based metaheuristics have been introduced to solve the problem. Vallada
and Ruiz [31] proposed a genetic algorithm for the problem. An ant colony optimization algorithm
has been developed by Arnaout et al. [3] for solving the problem. Recently, Arnaout et al. [4]
developed a worm optimization algorithm and compared it with some known metaheuristics for
the same problem.
Hybrid methods have also been developed to solve the UPMS-SDST problem. Fang et al. [12]
developed an hybridization of adaptive large neighborhood search algorithm with a tabu search
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algorithm. Zeidi and Hosseini [34] proposed a two-stage algorithm which combines a genetic algo-
rithm with a simulated annealing algorithm. Behnamian et al. [6] presented an hybridization of
ant colony optimization, simulated annealing and variable neighborhood search.
Notice that the setup-processing is operated automatically in these previous works. This means
that they did not consider the existence of a single or multiple servers to manage the setup process.
Moreover, this resource is shared by all jobs N and machines M .
There exist a few works that have taken into account these additional resources (servers) and
setup constraints such that the UPMS-CS-SDST problem is more less studied than the UPMS-
SDST problem. A new integer linear programming formulation has been proposed by Bektur et al.
[7] for solving the UPMS-CS-SDST problem without taking into account the unavailability of the
common server in some periods of T . Moreover, the same authors developed some metaheuristics
based on a simulated annealing and a tabu search algorithm for solving the problem. Elidrissi et al.
[11] introduced a mixed integer programming formulation for a similar problem with two commun
servers. They also developed two greedy heuristics and a general variable neighborhood search
algorithm. The results showed that this latter outperformed the two other approaches.
To the best of our knowledge, the work done by Raboudi et al. [27] represents the initial study
of the UPMS-CS-SDST problem taking into account the technological constraints and problem
characteristics that have been considered in our study. Their mixed integer linear programming
formulation has shown some limits such that it has been shown to be not able to solve small
instances to optimality with a number of jobs up to 7 and 6 machines.

3 Mixed Integer Linear Programming Formulation

In what follows, we present a mixed integer linear programming formulation [15] for solving the
UPMS-CS-SDST problem based on the following variables

– for each job k ∈ N and machine i ∈ M , let uk
i be a binary variables which equals to 1 if job k

is assigned to machine i, and 0 if not,
– for each machine i ∈ M , job j ∈ N0 and job k ∈ N , we denote by xi

j,k a binary variables which
is related to the sequence-dependent setup times such that it takes 1 if jobs j is processed
immediately before job k on machine i, and 0 if not,

– for each job j ∈ N and period t ∈ T , variable ykt equals to 1 if the setup operation of job k is
performed at period t, and 0 if not,

– for each two distinct jobs j, k ∈ N , we consider the variables qjk which takes 1 if the job k is
processed after job j even if they are not assigned to the same machine, and 0 if not. This
means that the starting period of the setup operation for job k is performed after the ending
period of the setup operation of job j,

– we denote by bk ∈ R+ (resp. ek ∈ R+) the starting period (resp. the ending period) of the
setup operation for job k,

– the completion period of processing for each job k ∈ N is denoted by ck ∈ R+.

The UPMS-CS-SDST problem is then equivalent to the following MILP

min
∑
k∈N

wkck, (1)

subject to ∑
i∈Mk

uk
i = 1,∀k ∈ N, (2)

∑
i∈M\Mk

uk
i = 0,∀k ∈ N, (3)

∑
j∈N0\{k}

xi
j,k = uk

i ,∀k ∈ N and i ∈ M (4)

∑
j∈N\{k}

xi
k,j ≤ uk

i ,∀k ∈ N and i ∈ M, (5)

∑
k∈N

xi
0,k ≤ 1,∀i ∈ M, (6)
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k∈N

ykt ≤ at,∀t ∈ T,
∑
t∈T

ykt =
∑

j∈N0\{k}

∑
i∈M

sjkx
i
j,k,∀k ∈ N, (7)

bk ≤ tykt +B(1− ykt ),∀k ∈ N and t ∈ T, (8)

tykt −B

t−1∑
t′=1

ykt′ ≤ bk,∀k ∈ N and t ∈ T, (9)∑
j∈N\{k}

∑
i∈M

pijx
i
j,k ≤ bk,∀k ∈ N, (10)

(t+ 1)ykt ≤ ek,∀k ∈ N and t ∈ {1, ..., Tmax − 1}, (11)

cj +B(
∑
i∈M

xi
j,k − 1) ≤ bk,∀k ∈ N and j ∈ N \ {k}, (12)

ek − bk ≥
∑

j∈N0\{k}

∑
i∈M

sjkx
i
j,k,∀k ∈ N, (13)

ek ≤ bj +Bqjk,∀k ∈ N and j ∈ N \ {k}, (14)

ej ≤ bk +B(1− qjk),∀k ∈ N and j ∈ N \ {k}, (15)

ck = ek +
∑
i∈Mk

piku
k
i ,∀k ∈ N, (16)

ck ≤ Tmax,∀k ∈ N, (17)

qjk ≤ 1,∀j ∈ K and k ∈ N \ {j}, (18)

uk
i , x

i
j,k, y

k
t , q

j
k, b

k, ek, ck ≥ 0, (19)

uk
i , x

i
j,k, y

k
t , q

j
k ∈ {0, 1}, (20)

where T ′ = {1, ..., Tmax − 1}, and B a large integer number (eg., B = Tmax is feasible).
The objective function (1) consists in minimizing the total weighted completion time of processing
for the different jobs in N . Equations (2) express the fact that each job k ∈ N is handled by only
one machine of its qualified machine i ∈ Mk. Equations (3) show that each job k ∈ N cannot be
assigned to a non qualified machine i ∈ M \Mk. Equations (4) ensure that a job k is preceded by
one job j ∈ N0 \ {k} on a machine i ∈ M if and only if job k is assigned to machine i. Moreover,
constraints (5) shows that a job k can be the predecessor of at most one job j ∈ N \{k} on machine
i if and only if it is assigned to machine i. The dummy-job can precede at most one job on each
machine i ∈ M as shown by constraints (6). The common server can handle at most one job at each
period t ∈ T if and only it is available at period t as noticed in constraints (??). However, variables
ykt are forced to be equal to 0 for each k ∈ N when the common server is not available at period t.
Equations (7) show that the number of periods in which the setup is performed for job k must be
equal to its setup-time. Constraints (8) and (9) ensure that a period t can be a starting period of
the setup operation of jobs k if the setup of job k is performed at period t and there does not exist
a period t′ ∈ {1, ..., t−1} in which the setup of job k is performed. Constraints (10) ensure that the
starting period of setup for a job k is forced to be greater than the processing time of a job j which
is processed immediately before job k on a shared qualified machine in Mk ∩Mj . In a similar way,
we ensure in constraints (11) that the setup operation of each job k ∈ N is accomplished after the
last period t in which the setup is performed for job k. Constraints (12) ensure the non-overlapping
of the processing operation with the setup operation for two distinct jobs that are processed one
after the other and immediately. The gap between the ending period and the starting period of
setup for job j is greater than its setup time as shown in constraints (13). Constraints (14) and
(15) ensure the non-preemption of setup constraints. The completion period for each job k ∈ K is
computed as shown in constraints (16). Constraints (17) impose that the completion period should
be smaller than Tmax. Inequalities (18) and (19) are the trivial inequalities, and constraints (20)
are the integrality constraints.
Using this formulation, we devise a branch-and-cut algorithm to solve the UPMS-CS-SDST problem
[15] by combining a branch-and-bound algorithm with a cutting plane algorithm.
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4 Iterated Local Search

In this section, we give a detailed description of the iterated local search algorithm [21] used
to solve the UPMS-CS-SDST problem. We discuss the importance of its different procedures.
This algorithm aims at building iteratively a sequence of solutions generated by an improvement
heuristic based on the so-called local search (LS) algorithm. The ILS is based on the following
procedures

– Representation of a solution: in this work, a solution S of the UPMS-CS-SDST problem is
considered as a sequence of jobs for the setup-processing. It can be represented as vector
{[1], [2], ..., [n]} where [k] denotes the job that is placed in position k in S.

– Evaluation procedure: for this, we first consider a solution S of the problem. This solution is
then evaluated by using a greedy algorithm as follows. At each iteration, we select the first
job k from the solution S that is not yet assigned to a machine i ∈ Mk. After this, for each
qualified machine i ∈ Mk of job k, we compute the starting period of setup, the ending period
of setup, and the completion time of the processing for job k while satisfying all constraints of
the problem with the set of jobs that are already proceeded (i.e., the set of jobs that precede
k in the solution S). Then, the selected job k is assigned to the qualified machine i ∈ Mk that
offers the minimum completion time Ck. The algorithm stops when all jobs are assigned, or
when the completion time Ck of the current job k exceeds Tmax which means that solution S
is infeasible. The output of this algorithm is given by a quadruple (f(S), G,C,R) where
• f(S) denotes the total weighted completion time of processing for the different jobs in S,
• G is a matrix of m ∗ Tmax dimension such that each element Gi

t denotes the index of the
job assigned at period t of the machine i, and equals to 0 if no job is assigned to machine
i at period t. This can be used to draw a Gantt diagram.

• C is a vector of size n which presents the completion time of processing for the set of jobs
such that each Ck represents the completion time of job k as mentioned before.

• R is a vector of size Tmax such that each element Rt stores the index of the job for which
the setup processing is done at period t by the common server, and 0 if no setup is done
at period t

– Initial solution: an initial solution for the UPMS-CS-SDST problem can be seen as a starting
point in a search area of the solutions. For this, one can randomly generate an initial solution S0

for the problem. We then use an evaluation procedure described above to evaluate this solution
and further show if it is feasible or not for the problem. Generally, this starting solution S0

does not give a good quality solution. This step must not be neglected such that starting with a
good solution improves the quality of the algorithm and allows achieving high quality solutions
as fast as possible and especially the computation time is very short.

– Neighborhood procedure: this aims at exploring the neighborhood area of a solution S in par-
ticular and the search area of all solutions of the problem in general. This procedure generates
a new solution S′ for the problem, called neighbor of S (denoted by S′ = Neighbor(S)) such
that some positions of certain jobs of S are randomly changed in S′. This new solution is then
evaluated to be compared with solution S. This procedure should be executed many times
to explore the neighborhood space of a solution and extend the search space. For this, we
distinguish several neighborhood strategies that can be used to explore the solution space
• Exchange: we need to select randomly two jobs j and k and change their positions in the
sequence J .

• Insertion: it consists in moving randomly a job from a position a and inserting it in another
position b in sequence J .

• Inversion: we first select randomly two positions a and b. Then, we reverse the sub-sequence
of jobs situated between a and b.

– Acceptance Criterion: choosing the ideal acceptance criterion is very important such that it
aims at determining the rules for the acceptance of updating the current best solution and
replacing it by an iteration solution. For this, we use the so-called ”Better” criterion proposed
by Lourenço et al. [21] such that a solution S′ can replace a solution S at each iteration of the
algorithm if and only if the quality of the new solution S′ is better or equal to the quality of
solution S.

– Stopping criterion: in our study, the algorithm terminates when we exceed a limited number
of iterations or a maximum CPU time.
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– Improvement procedure: this is based on a local search algorithm. Consider a solution S
′
,

the local search algorithm aims at finding a nearby solution S
′∗ with better quality than

S
′
. This algorithm needs as input the maximum number of iterations without improvement,

neighborhood method, a maximum CPU time, and an initial solution S
′
. We then explore

the neighborhood space of solution S
′
given at each iteration of the ILS which is considered

as the initial best solution of the LS (denoted by S∗′). At each iteration of the local search
algorithm, we generate a new solution S” that can be seen as a neighbor of the current best
solution S∗′ and then evaluate it using the greedy-algorithm. This will then be compared with
the current best solution S∗′. We update the current best solution if it satisfies the acceptance
criterion. The algorithm stops when the stopping criterion is verified. Algorithm 1 summarizes
the different steps of the local search algorithm.

Algorithm 1 Local Search Algorithm

Require: a maximum number of iterations without improvement denoted by Maxit ≥ 0, a maximum
CPU time denoted by MaxCpu ≥ 0, perturbation method denoted by Neighbor, evaluation procedure,
initial solution denoted by S′.
i← 0 and S∗′ ← S′

while i ≤Maxit and MaxCpu is not exceeded do
S”← Neighbor(S∗′) and i← i+ 1
if f(S”) ≤ f(S∗′) then

if f(S”) < f(S∗′) then
i← 0

end if
S∗′ ← S”

end if
end while
return S∗′

To summarize, the ILS can be seen as an iterative improvement technique. Here, the goal is to
find the best sequencing of jobs which gives a high quality solution for the problem. For this,
we first use a construction method to generate an initial feasible solution S0 for the problem
that will be improved by the LS to provide an initial best solution S∗ for the problem. After
this, and at each iteration, we apply multiple perturbations on the current solution S∗ using
a neighborhood method. As a result, a new solution S′ is found for the problem. We then use
the local search algorithm to explore the neighborhood space of solution S′ and return a local
optimum S∗′ of the LS. The resulting solution will then be compared with the current best
solution of the ILS and become the new best solution if it satisfies the acceptance criterion.
The algorithm is stopped if one of the stopping criteria is verified.
All these steps are summarized in Algorithm 2.

Algorithm 2 Iterated Local Search Algorithm

Require: a maximum number of iterations for the ILS denoted by MaxILS
it ≥ 0, a maximum CPU time

for the ILS denoted by MaxILS
Cpu ≥ 0, number of perturbations for the ILS denoted by b, perturbation

method for the ILS denoted by NeighborILS , LS’s parameters, evaluation procedure, initial solution
denoted by S0.
S∗ ← LS(MaxLS

it ,MaxLS
Cpu, NeighborLS , f, S0) and i← 0

while i ≤MaxILS
it and MaxILS

Cpu is not exceeded do
S′ ← S∗, a = 0 and i← i+ 1
while a ≤ b do

S′ ← Neighbor(S′) and a← a+ 1 //Perturbation(S′)
end while
S∗′ ← LS(MaxLS

it ,MaxLS
Cpu, NeighborLS , f, S

′)
if f(S∗′) ≤ f(S∗) then //AcceptanceCriterion(S∗, S∗′)

S∗ ← S∗′

end if
end while
return S∗
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5 Matheuristics

In what follows, we introduce three matheuristics for solving the UPMS-CS-SDST problem. They
can be considered as a two stage algorithm combined an iterated local search algorithm with a
modified version of our MILP formulation [15]. Notice that these approaches provide approximate
solutions for the problem without guarantee of optimality.
Throughout the following sections, our MILP formulation already presented in Section 3, will be
considered as the basic MILP formulation for the problem.

5.1 Matheuristic I: Machine-Job-Sequencing Fixing

For this, we first use an ILS to solve the problem. Consider the resulting solution S. We then use
an updated formulation of the basic MILP with some additional constraints. This matheuristic
aims at producing an optimal solution for the resulting sequencing of jobs provided by S while
respecting some additional precedence constraints required by S. This means that each job j ∈ N
should be preceded by each job k having a smallest index in S compared with the index of j in S
if and only if the two jobs j and k are assigned to the same machine. Otherwise, the precedence
constraint between these two jobs is not considered. For this, we consider a matrix P of n ∗ n
dimension such that Pj,k = 1 if job j is preceded by job k in S, and 0 if not. After this, we use a
MILP formulation to solve the problem such that we keep the same variables and constraints used
in the basic MILP. Moreover, we add the following precedence constraints

ck +B(uj
i + uk

i − 2) ≤ bj ,∀k ∈ N, ∀j ∈ N \ {k},∀i ∈ M with Pj,k = 1. (21)

Inequalities (21) ensure that if job j and k are assigned to the same machine, and Pj,k = 1 then
the starting period of setup for job j must be greater than the completion period of job k.
Notice that this modified MILP can also be used as an exact method to solve a new variant of the
UPMS-CS-SDST problem that can be called unrelated parallel machines scheduling problem with
a common server, job-sequence dependent setup times and precedence constraints.

5.2 Matheuristic II: Machine-Job-Assignment Fixing

In this case, we aim at identifying the optimal solution of the problem with pre-assignment of
machines. For this, we make the set of qualified machines Mk = {i} if job k is assigned to machine
i in solution S of ILS. Based on this, we introduce a new MILP to solve the problem taking into
account the pre-assignment of machines as additional constraints. It’s based on the same variable
of the basic MILP without taking into account the variables uk

i given that the jobs are already
assigned to machines. We also modify the definition of variables xi

j,k such that we consider a new
variable xj,k which equals to 1 if job k is processed immediately after job j and they should be
already assigned to the same machine, and 0 if not. As a consequence, the number of variables
is decreased and becomes less compared with the basic MILP. Moreover, the constraints that are
related to the machine assignment should be deleted, and constraints (4), (5), (7), (10), (12), (13)
and (16) should be modified as follows∑

j∈Nk∪{0}

xj,k = 1,∀k ∈ N, (22)

∑
j∈Nk

xk,j ≤ 1,∀k ∈ N, (23)

∑
t∈T

ykt =
∑

j∈Nk∪{0}

sjkxj,k,∀k ∈ N, (24)

∑
j∈Nk

pijxj,k ≤ bk,∀k ∈ N with {i} = Mk, (25)

cj +B(xj,k − 1) ≤ bk,∀k ∈ N, ∀j ∈ Nk, (26)

ek − bk ≥
∑

j∈Nk∪{0}

sjkxj,k,∀k ∈ N, (27)

ck = ek + pik,∀k ∈ N with {i} = Mk, (28)
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where Nk denotes the set of jobs that are assigned to the same machine with job k in solution
S. As can be noticed, the number of variables and constraints is largely decreased due to these
modifications compared with the basic MILP.

5.3 Matheuristic III: Setup-Job-Sequencing Fixing

The third matheuristic consists in determining the optimal solution for the problem with some
additional constraints such that the predecessor of each job is known in advance using the solution
S of the ILS. As a consequence, the setup time of each job is known in advance. For this, we denote
by jk the index of job that has been processed immediately before job k and assigned to the same
machine in solution S. Using this, we introduce another MILP based on the original MILP with
some modifications. We keep the same variables of the original MILP without considering the setup
variables xi

j,k. Some constraints should be removed from the model (e.g., constraints (4), (5), (6)),
and other ones as (7), (10), (12), (13), should be modified as follows∑

t∈T

ykt = sjkk ,∀k ∈ N, (29)∑
i∈M

pijk ≤ bk,∀k ∈ N, (30)

cjk ≤ bk,∀k ∈ N, (31)

ek − bk ≥ sjkk ,∀k ∈ N. (32)

Moreover, each job k and its predecessor jk should be assigned to the same machine. For this, we
add the following constraints to the new MILP formulation

ujk
i = uk

i ,∀k ∈ N, ∀i ∈ M. (33)

6 Computational Study

The different approaches described above have been implemented in Java and run on high perfor-
mance computing servers with 64 GB as a memory limit. For each MILP, we devise a Branch-and-
Cut algorithm to solve the problem. We have also implemented the MILP of Raboudi et al. [27].
For this, we use CPLEX [10] to solve the MILP formulations provided in previous sections. We also
use its proper cuts to obtain tighter bounds for the linear relaxation and boost the performance
of the Branch-and-Cut algorithm. We consider 900 sec as a CPU time limit for the ILS and 3600
sec for the B&C algorithm. The maximum number of iterations for the ILS is limited to 200000
such that the number of perturbations of the ILS equals to 4 at each iteration. The common server
is available for 8 contiguous periods and then unavailable for 8 contiguous periods in T . All the
approaches have been tested using three families of instances described as follows.

Instances / Characteristics |M | |N | wk pik sjk |Mk| Tmax

Instances I [27] {2,3,4} {4,5,6,7, 8, 10, 20, 24} [1; 5] [10; 350] [1; 10] ≥ 1 [200; 1000]

Instances II {2,3,4} {4,5,6,7, 8, 10, 20, 24} [1; 5] [10; 350] [1; 10] ≥ 2 [200; 1000]

Instances III {2,5,10, 15, 20} {5,10, 20, 30, 40} [1; 6] [1; 16] [1; 6] ≥ 1 [300; 4000]
Table 1. Instances characteristics.

Concerning the ILS, for each instance and each neighborhood procedure, we compute the average
value of the objective function (denoted by avg) and the objective function for the best solution
(denoted by min) of 10 independent ILS solutions starting from the same initial solution that has
been generated randomly.
On the other hand, for the different matheuristics, and for each instance, we use the best solution
(min) found by 10 independent ILS solutions that will provide some additional constraints for the
second stage of matheuristic as already described in Section 5.
The main objective of this study is to show the effectiveness of our approaches using different
instances (30 instances of type I, 32 instances of type II and 131 instances of type III). For this,
we address a comparison study between the different approaches in tables 2, 3, 4 and 5.
We consider the following indicators:
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– % opt (avg): percentage of instances that are solved to optimality at each replication by the
chosen algorithm (10 replications for the ILS and one replication when using a Branch-and-Cut
algorithm for each instance).

– % opt (min): percentage of instances that are solved to optimality in at least one replication
by the chosen algorithm.

– % best sol (avg): percentage of instances for which the chosen algorithm provides the best avg.
– % best sol (min): percentage of instances for which the chosen algorithm provides the best

min.
– % low standard deviation (SD): percentage of instances for which the chosen algorithm has the

best SD.
– % best sol the ILS is improved or equal: percentage of instances for which the chosen algorithm

found a solution value which is equal or strictly better than the ILS’s solution value.
– % best sol the ILS is improved: percentage of instances for which the chosen algorithm found

a solution value which is strictly better than the ILS’s solution value.

Notice that the results of our B&C algorithm (using our MILP) will be taken as a benchmark in
our computational study given that it has been shown to be the best model in our previous study
[15] compared with the MILP of Raboudi et al. [27], and other ones that we already proposed in
previous studies.
First, results show that for the two first classes of instances I and II respectively, the B&C algo-
rithm is able to solve to optimality 70% and 53, 13% of instances respectively. Moreover, the B&C
is shown to be able to beat the existing one MILP of Raboudi et al. [27] which suffers more from a
tractability point of view even for small-sized instances. The latter solves to optimality 10%, 3, 13%
and 2, 29% of instances of type I, II and III respectively. However, the B&C algorithm becomes
less performant for the large-sized instances (Instances III) such that 6, 11% of these instances are
solved to optimality. As a consequence, the B&C becomes more less efficient when using large-sized
instances and even for the medium ones. For this reason, and as mentioned before, we use the ILS
and some matheuristics to solve the UPMS-CS-SDST problem.
We first show in Table 2 the effectiveness of the ILS using different neighborhood procedures de-
noted respectively by ILS Exc , ILS Inv and ILS Ins when using respectively exchange, inversion
and insertion as neighborhood procedure while considering the instances that are solved to op-
timality by the B&C. For this, we consider the two indicators % opt (avg) and % opt (min) to
compare between these algorithms using the instances that are solved to optimality by the B&C.

% opt (avg) % opt (min)

Raboudi et al. 14,29 14,29
ILS Exc 90,48 90,48
ILS Inv 90,48 90,48
ILS Ins 90,48 90,48

Math MJSF 95,24 95,24
Math MJAF 85,71 85,71

Instances I

Math SJSF 76,19 76,19

Raboudi et al. 5,88 5,88
ILS Exc 70,59 70,59
ILS Inv 70,59 70,59
ILS Ins 70,59 70,59

Math MJSF 88,24 88,24
Math MJAF 82,35 82,35

Instances II

Math SJSF 70,59 70,59

Raboudi et al. 37,50 37,50
ILS Exc 75,00 75,00
ILS Inv 75,00 75,00
ILS Ins 75,00 75,00

Math MJSF 62,50 62,50
Math MJAF 87,50 87,50

Instances III

Math SJSF 62,50 62,50

Table 2. Comparison between different algorithms based on the instances that are solved to optimality
by the B&C.

The ILS has been shown to be very performant for the different instances such that it is able to
solve several instances to optimality and even for the instances that are not solved to optimality by
the MILP of Raboudi et al. [27]. The ILS also allows solving several instances that are not solved
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by the B&C but without guarantee of optimality.
Moreover, we show in Table 3 the efficiency of each algorithm based on two indicators: % best sol
(avg) and % best sol (min) while using all instances.

% best sol (avg) % best sol (min)

Raboudi et al. 46,67 46,67
B&C 76,67 76,67

ILS Exc 83,33 86,67
ILS Inv 80,00 80,00
ILS Ins 83,33 86,67

Math MJSF 76,67 76,67
Math MJAF 73,33 73,33

Instances I

Math SJSF 70,00 70,00

Raboudi et al. 40,63 40,63
B&C 75,00 75,00

ILS Exc 84,38 78,13
ILS Inv 71,88 68,75
ILS Ins 75,00 78,13

Math MJSF 78,13 78,13
Math MJAF 75,00 75,00

Instances II

Math SJSF 71,88 71,88

Raboudi et al. 7,63 7,63
B&C 9,16 9,16

ILS Exc 61,07 64,12
ILS Inv 18,32 32,82
ILS Ins 59,54 81,00

Math MJSF 16,03 16,03
Math MJAF 9,92 9,92

Instances III

Math SJSF 12,98 12,98

Table 3. Comparison between different algorithms based on all instances.

We notice in Table 3 that the ILS improves the quality of certain solutions proposed by the B&C
and is able to find better solutions (based on average and min) than those found by the B&C
or the MILP of Raboudi et al. [27]. These results are still stable for the different neighborhood
procedures such that the exchange neighborhood procedure is shown to be advantageous in some
instances compared with the other ones and also having the low SD (see Table 4) for the different
instances of type I, II and III. Moreover, and using large-sized instances of type III, the ILS with
its different neighborhood procedures, is able to solve some instances to optimality. However, for
the other ones, the ILS cannot guarantee the optimality. For these same instances, the ILS gives
several high quality solutions compared with the B&C.

% low SD by ILS Exc % low SD by ILS Inv % low SD by ILS Ins

Instances I 86,67 83,33 86,67

Instances II 100,00 87,5 90,63

Instances III 61,83 27,48 59,54

Table 4. Comparison between different neighborhood procedures using standard deviation indicator.

Next, we combine the ILS with a B&C algorithm to devise a matheuristic for solving the UPMS-
CS-SDST problem as already described in Section 5. For this, we assess the performance of three
matheuristics denoted respectively by Math MJSF, Math MJAF and Math SJSF. Table 2 shows
that that they are also able to solve several instances to optimality and showed to be better than
the ILS while using Math MJSF for instances of type I and II. This latter solves some instances to
optimality that are not solved to optimality by the ILS and the MILP of Raboudi et al. [27]. Table
3 also shows that the Math MJSF is advantageous in some instances compared with the other
approaches. However, when the optimality is not guaranteed or when using large-sized instances,
the ILS proposes better solutions than the different matheuristics due to the usage of the MILP
and the B&C in the second stage such that each MILP becomes more less tractable when using
large-sized instances.
On the other hand, we aim to evaluate the impact of using the best solution of the ILS to add some
additional constraints to the MILP in order to devise the different matheuristic, and also evaluate
the impact of using this solution as a warm-start for these matheuristics. For this, Table 5 shows
initially that the different matheuristics are able to produce several solutions with quality better
or equal than those provided by the ILS (see column 1 in Table 5), and strictly better than those
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of ILS for other ones (see column 2 in Table 5). Moreover, the warm-start technique is shown to be
very efficient when using large-sized instances such that this technique is capable of boosting these
matheuristics, and further allows obtaining strictly better solutions for more instances compared
with when it’s not used.

Without Warm-Start With Warm-Start
% best sol the ILS

is improved or equal
% best sol of the
ILS is improved

% best sol of the
ILS is improved

Math MJSF 86,67 10,00 10,00
Math MJAF 83,33 10,00 10,00Instances I
Math SJSF 83,33 13,33 13,33

Math MJSF 75,00 18,75 18,75
Math MJAF 78,13 31,25 31,25Instances II
Math SJSF 78,13 31,25 34,38

Math MJSF 17,56 6,11 28,24
Math MJAF 12,21 4,58 29,01Instances III
Math SJSF 16,03 4,58 32,82

Table 5. Effectiveness of Matheuristics.

As a consequence, all these previous results prove the high quality performance of our approaches
for solving the UPMS-CS-SDST problem.

7 Conclusion

In this paper, we have addressed the non-preemptive unrelated parallel machines scheduling prob-
lem with a common server and job-sequence dependent setup times. First, we have presented some
related works considering the setup processing. We have proposed a mixed integer program to for-
mulate the problem, and have devised an exact algorithm based on a branch-and-cut algorithm for
solving the problem. Despite the NP-hardness of the problem, we have developed a metaheuristic
based on an iterated local search algorithm to solve the problem. Using these results, we have
presented different matheuristics that can be seen as post-optimization algorithms. The results
have shown the effectiveness of these approaches and the advantages of certain ones.
Finally, it would be interesting to further develop some adaptive and hybrid metaheuristics for
solving the problem. We also plan to study new realistic or real variants of the problem while
considering some additional technological constraints (machine availability, delay for jobs) and
ressources (multiple servers).
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Abstract. The Roman Domination Problem is an NP-hard combinatorial optimization
problem on an undirected simple graph. It represents scenarios where a resource shall be
economically distributed over its vertices while guaranteeing that each vertex has either a
resource itself or at least one neighbor with a sharable surplus resource. We propose several
(meta-)heuristic approaches for solving this problem. First, a greedy construction heuristic
for quickly generating feasible solutions is introduced. A special feature of this heuristic is
an optional advanced tiebreaker. This construction heuristic is then randomized and com-
bined with a local search procedure to obtain a greedy randomized adaptive search procedure
(GRASP). As an alternative, we further propose a simulated annealing (SA) algorithm to
improve the solutions returned by the construction heuristic. As we observe different pros
and cons for the GRASP and the SA, we finally combine them into a simulated annealing
hybrid, which interleaves phases of greedy randomized construction and phases of simulated
annealing. All algorithms are empirically evaluated on a large set of benchmark instances
from the literature. We compare to an exact mixed integer linear programming model that
is solved by Gurobi as well as to a variable neighborhood search from the literature. In par-
ticular the simulated annealing hybrid turns out to yield on average the best results, making
it a new state-of-the-art method for the Roman domination problem.

Keywords: Roman Domination Problem · Metaheuristics · GRASP · Simulated Annealing

1 Introduction

The Roman Domination Problem (RDP) is a combinatorial optimization problem on graphs, for-
mally introduced in ReVelle and Rosing [25]. It is related to the classical dominating set problem
and originates from the following scenario: a Roman emperor might wonder how many legions it
takes to ensure that all provinces of the empire can be defended against a single attack, without
leaving any province vulnerable. A province in the empire is considered defended if a legion is
stationed in it or if there is a neighboring province with two stationed legions, as such a neighbor
can send one of its legions to help the attacked province. More formally, the problem is defined
as follows. Given an undirected simple graph G = (V,E) with vertex set V (corresponding to the
provinces) and edge set E (representing the neighborhoods), a labeling function f : V → {0, 1, 2}
assigns each vertex a label (the number of stationed legions). If this is done in such a way that every
vertex with label 0 has at least one neighbor labeled 2, this function is called a Roman Domination
Function (RDF) [4]. The weight of this function is given by |f | =

∑
v∈V f(v), and the lowest weight

of any RDF of G is the Roman domination number of G. The objective of the RDP is to find an
RDF of lowest weight. Beyond the historical background in military strategy planning, practical
applications can occasionally be found more generally when an area represented as a graph shall be
covered with a minimum amount of some resource and neighboring vertices may share units of the
resource. For instance, Pagourtzis et al. [23] analyze different problem formulations concerning op-
timal server placement and highlight that one of these corresponds to the RDP. Similarly, Ghaffari
et al. [10] describe how the RDP can be used in the deployment of wireless sensor networks.

In terms of complexity, the RDP is known to be NP-hard [6]. Thus, optimally solving the prob-
lem is in general not possible in polynomial time, unless P = NP , which creates a desire for
heuristic approaches that can produce reasonably good solutions in a short amount of time also

⋆ The first two authors contributed equally.
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for large instances. We first introduce a greedy construction heuristic, which is then randomized
and extended to a greedy randomized adaptive search procedure (GRASP). Moreover, we propose a
simulated annealing (SA) algorithm, as well as a simulated annealing hybrid (SAH) that combines
the randomized construction heuristic and simulated annealing approaches. All these algorithms
are experimentally evaluated and compared to a former variable neighborhood search (VNS) from
Ivanović and Urošević [15] on benchmark instances from the literature. Results indicate that SAH
performs best in our tests.

The next Section 2 surveys related work. In Sections 3 to 5, we introduce the construction heuristic,
the GRASP, the SA, and the SAH approaches, respectively. Results are discussed in Section 6.
Finally, we give concluding remarks in Section 7.

2 Related Work

The RDP is inspired by the strategy that the Roman emperor Constantine proposed to defend the
Roman empire, which is discussed in an article by Stewart [27] from 1999. ReVelle and Rosing [25]
formally define the problem and propose the first binary linear programming formulation for it.
Cockayne et al. [4] introduce the term Roman domination, and give a variety of theoretical results
for the problem, such as the observation that the Roman domination number is at least the size
of the domination number (i.e., the cardinality of the smallest dominating set) and at most twice
this number for any graph. They also characterize the graphs with a Roman domination number
that exceeds the domination number by at most two. Xing et al. [29], on the other hand, provide
a characterization of graphs for which the difference between Roman domination number and
domination number equals a fixed constant not smaller than two.

Dreyer [6] dedicates a chapter of their doctoral thesis to theoretical findings regarding the problem,
also providing a proof for the NP-hardness of the problem. Favaron et al. [7] provide an optimal
upper bound for the Roman domination number of connected graphs, as well as bounds for the
number of vertices labeled with 0, 1, or 2 in an RDF of minimal weight. Shang and Hu [26] consider
the problem on unit disk graphs. They provide an approximation algorithm and a polynomial-time
approximation scheme for graphs of this class. Moreover, they show that the RDP is NP-hard on
unit disk graphs. Bounds and exact results for the Roman domination number on cardinal products
of paths, cycles, and general graphs are given by Klobučar and Puljić [18, 19]. Peng and Tsai [24]
prove that the problem can be solved in linear time on graphs of bounded treewidth. Liedloff et
al. [20, 21] show that the RDP can be solved in linear time on interval graphs and cographs, among
other algorithmic results. Currò [5] dedicates their doctoral thesis to the RDP on grid graphs,
proving lower and upper bounds on the Roman domination number of such graphs.

A wide variety of related domination problems have also been investigated by researchers over the
past decades, including the Weak Roman Domination Problem (WRDP) devised by Henning and
Hedetniemi [12], the Signed Roman Domination Problem introduced by Abdollahzadeh Ahangar
et al. [1], the Signed Total Roman Domination Problem proposed by Volkmann [28] and the Double
Roman Domination Problem [2].

Burger et al. [3] propose another binary programming formulation for the RDP. The formulations
by ReVelle and Rosing [25] and Burger et al. [3] are examined by Ivanović [13], who further provides
improved versions of both formulations.

The first heuristic approaches for the RDP appear to stem from Nolassi [22] and Currò [5]. In
their doctoral theses, multiple construction heuristics are proposed and evaluated. Furthermore,
Currò [5] presents genetic algorithms for the problem. Later, Ivanović and Urošević [15] propose a
VNS algorithm for the RDP and the WRDP, and report mostly superior results on many instances
in comparison to the earlier solution approaches. Moreover, Ghaffari et al. [10] describe two simple
construction heuristics. The only other heuristic approach for the RDP we found in the literature is
a genetic algorithm by Khandelwal et al. [16]. These authors, however, test their genetic algorithm
on a different instance set than previous publications and do not reference earlier heuristic ap-
proaches. Therefore, we compare primarily to an exact mixed binary linear programming approach
as well as to the VNS from [15]. Filipović et al. [9] provide heuristic and exact solution methods
for the signed and signed total RDP variants.
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Algorithm 1: Construction heuristic
Input: Graph G = (V,E)

1 du(v)← |N [v]| ∀v ∈ V
2 if using tiebreaker then
3 d2u(v)← number of vertices with distance exactly 2 from v ∀v ∈ V
4 end
5 f(v)← unlabeled ∀v ∈ V
6 S ← V
7 while ∃v ∈ S du(v) ≥ 2 do
8 v ← vertex of S with largest du value (prefer vertices with lower d2u value if tiebreaker is used)
9 forall n ∈ N(v) do

10 if n is unlabeled then
11 f(n)← 0
12 end
13 end
14 f(v)← 2
15 S ← S \ {v}
16 end
17 label all unlabeled vertices 1

// Post-processing: local improvement
18 forall v ∈ V with f(v) = 2 do
19 f(v)← 0
20 if RDF condition violated for any u ∈ N(v) then
21 f(v)← 2
22 else if RDF condition violated for v then
23 f(v)← 1
24 end
25 end
26 return f

In general, the literature has been mostly focusing on theoretical results thus far. This lack of
focus on heuristic algorithms for the RDP in the literature indicates that the potential of such
algorithms may not have been exhausted yet and promising approaches might be left to discover,
which motivates our work.

3 Greedy Construction Algorithm

We now present our (deterministic) greedy construction heuristic. It is inspired by the algorithms
described by Ghaffari et al. [10]. We later realized that its core principle is shared by the “GainFac-
tor” heuristic described by Currò [5], however, our algorithm differs from the latter by including a
tiebreaker, using the unlabeled degree instead of the GainFactor, incorporating a label-reduction
step in the end, and other smaller differences. The general idea of our construction heuristic is that
assigning the label 2 to vertices of high degree is frequently a good decision. For a vertex v ∈ V ,
N(v) = {u ∈ V |uv ∈ E} denotes the open neighborhood of v, while we write N [v] = N(v) ∪ {v}
for the closed neighborhood. Vertex w dominates vertex v if w ∈ N [v] and w is labeled 2 or w = v
and w is labeled 1. A vertex v is dominated if it is dominated by some vertex w.

Algorithm 1 shows the heuristic in pseudocode. The procedure takes a graph G as input. For a
vertex v ∈ V , du(v) represents the number of unlabeled vertices in N [v]. This number is updated
accordingly whenever changes to the labeling function are made. Intuitively, du(v) is the number
of vertices that are not yet dominated in the current partial solution, but that would be dominated
when assigning the label 2 to v. Our algorithm can be used with an optional tiebreaker, which
will be described in Section 3.1. If this tiebreaker is used, one must also manage the d2u values,
for each vertex v ∈ V , where d2u(v) is the number of unlabeled vertices with distance exactly two
from v. In other words, d2u(v) is the number of unlabeled vertices that are reachable in two hops
from v, but that are not reachable with less than two hops. After initializing du and possibly d2u,
the label f(v) of each node v ∈ V is set to unlabeled and a set S is initialized with all nodes to be
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processed. As long as there exists some vertex in S, such that labeling it with 2 would dominate at
least two vertices that are undominated so far, the following is iterated. A vertex with largest du
is selected (potentially breaking ties by preferring vertices of lower d2u-value), labeled with 2, and
all its still unlabeled neighbors are labeled with 0. Vertices with label 2 are removed from the set
of vertices S. Once no vertex v with du(v) ≥ 2 exists anymore, labeling further vertices with 2 is
not beneficial anymore. Therefore, the loop is finished and the algorithm proceeds by labeling all
remaining unlabeled vertices with 1. Thereafter, the resulting labeling f is already an RDF, but
some vertices may have a higher label than necessary. As a post-processing step, the algorithm
therefore performs a local improvement by attempting to reduce the label of each vertex so far
labeled with 2. Finally, the obtained locally optimal labeling function f is returned as a solution.
To improve the efficiency of our post-processing step, we keep track of the number of vertices
dominating every vertex. Using a heap data structure, the algorithm can be implemented to run in
time O(∆|V | log(|V |)) = O(|V |2 log(|V |)) without the tiebreaker, where ∆ is the maximum degree
of the graph (we assume ∆ > 0).

3.1 Tiebreaker

Since many vertices with the same du values can exist, one may want to employ a meaningful
tiebreaker. Our tiebreaker is inspired by the one used by Ghaffari et al. [10] in their second greedy
algorithm. We also attempted to implement their approach, however, we found it difficult to do so
efficiently in conjunction with a heap. In case of a tie, we select a vertex that has the lowest number
of unlabeled vertices with distance exactly two from it. The intuition behind this tiebreaker is that a
vertex v with a high du value and a low d2u value may have many neighbors that cannot be dominated
well by vertices other than v. These values adapt to changes made by the greedy algorithm and the
required bookkeeping can easily be implemented in a performant way. Efficiently computing the
vertices with distance exactly two for every vertex can initially be done via breadth-first-search or
by squaring the adjacency matrix of the graph. We opted for the first approach. This computation
generally dominates the run-time of the algorithm, but the construction heuristic still terminates
within seconds on all test instances in our computational experiments discussed in Section 6.

4 GRASP

GRASP is a prominent metaheuristic consisting of a construction and a local improvement
phase [8]. These two phases are executed repeatedly until some stopping criterion is met, and
the best found solution is returned. Our GRASP approach utilizes a randomized version of the
above greedy heuristic and a k-flip neighborhood local search. The k-flip neighborhood is inspired
by an abstract view of the RDP that is used by Currò [5] to encode individuals in their genetic
algorithms. In this view, solutions are encoded as binary strings where a bit i is set to one iff vertex
i has label 2, and set to zero otherwise. To obtain feasible solutions from such encodings, all vertices
with their corresponding bit set to one receive the label 2, all vertices with their corresponding bit
set to zero that are adjacent to a vertex labeled 2 receive the label 0 and all remaining vertices
receive the label 1. Flipping a bit therefore causes a vertex to be relabeled either from 2 to a lower
label, or the other way around, implicitly also adjusting the labels of affected neighbors with labels
different from 2. In our randomized version of Algorithm 1, we do not always select the vertex of
S with the highest du value, but use a threshold based approach instead. This selection procedure
is shown in Algorithm 2. We first determine the maximum unlabeled degree of any vertex of the
set S, d∗u, and then form a restricted candidate list (RCL), consisting of all vertices v ∈ S with
du(v) ≥ τd∗u, where τ ∈ [0, 1] is a strategy parameter. In the end, a vertex is selected uniformly
at random from the RCL and returned. If the returned vertex v has du(v) < 2, it is skipped,
since labeling such a vertex 2 would not be worth-while. Note that the randomized version of the
construction algorithm is performed without the tiebreaker.

5 Simulated Annealing

Simulated Annealing (SA) is another widely used metaheuristic, introduced under its current name
by Kirkpatrick et al. [17]. Our SA approach computes an initial solution using our greedy con-
struction heuristic with the tiebreaker, and then tries to refine it by using the k-flip neighborhood
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Algorithm 2: GRASP vertex selection
Input: Vertex set S, unlabeled vertex degrees du

1 d∗u = maxv∈S(du(v))
2 RCL = {v ∈ S | du(v) ≥ τd∗u}
3 return vertex from RCL selected uniformly at random

Algorithm 3: Simulated Annealing
Input: Graph G = (V,E)

1 xbest ← deterministic construction heuristic with tiebreaker (G)
2 x← xbest // current solution
3 T ← Tinit // current temperature
4 while time limit not exceeded do
5 flipVertices ← k vertices selected uniformly at random with replacement
6 remove duplicates in flipVertices
7 x′ ← solution resulting from flipping the flipVertices in x
8 if |x′| < |x| then
9 x← x′

10 if |x′| < |xbest| then
11 xbest ← x′

12 end
13 else
14 d← |x′| − |x|
15 if (random value ∈ [0, 1)) < e−d/T then
16 x← x′

17 end
18 end
19 if T has not changed in |V |2 iterations then
20 T ← α · T
21 end
22 if e−2/T < β and |x| not improved in last k · ϕ iterations then
23 T ← −2k

ln γ
// reheating

24 end
25 end
26 return xbest

structure in the usual SA fashion. This procedure is shown in Algorithm 3. It uses the following ad-
ditional strategy parameters: an initial temperature Tinit, a geometric cooling factor α, a threshold
β for the minimum probability of accepting worse moves, a parameter γ controlling the probability
of accepting worse moves after reheating, a number ϕ of steps without improvement that is used
to determine when reheating should occur, and a time limit for termination.

In each iteration, our procedure samples k vertices uniformly at random, and then proceeds to
remove duplicate entries from the sampled vertices. We sample with replacement so that also
moves flipping less than k vertices are possible. These up to k vertices are then flipped in the
current solution x to generate a new neighboring solution x′. This solution is accepted if it is
better, or, in traditional simulated annealing fashion, with random probability depending on the
solution quality as well as the current temperature T if it is worse. The temperature is cooled down
by geometric cooling with a factor of α every |V |2 iterations. Once the temperature has fallen to a
point where the probability of accepting a move that increases the objective value by two is smaller
than β, and the objective value of the current solution has not improved in the last k ·ϕ iterations,
a reheating is performed such that worse moves are accepted again with a higher probability. As
an overall stopping criterion, we use a maximum time limit, but also other stopping conditions,
e.g., based on convergence, are conceivable.

As will be shown in more detail in Section 6, this algorithm performed well in our experiments,
especially on graphs with substantial structure, like grid and net graphs. However, even though the
SA outperformed Gurobi on large instances with less structure, i.e., randomly constructed graphs,
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the GRASP from the last section yielded in general slightly better solutions on these instances.
This inspired us to investigate a combination we call Simulated Annealing Hybrid (SAH) to pos-
sibly get the best of both worlds: We decided to split the algorithm into phases of randomized
greedy construction and phases of refining the best found greedy solution through simulated an-
nealing. These two phases are executed in an alternating fashion as shown in Algorithm 4. In the
randomized greedy phase, we first generate an initial solution by running our deterministic greedy
construction using the tiebreaker, and then repeatedly generate solutions using the randomized
greedy construction with a threshold of τ . Since the randomized greedy phase will usually only
be run a handful of times, running the greedy algorithm using the tiebreaker once per phase is
not an issue in terms of run-time. The best solution found in the randomized greedy construction
phase is then used as the initial solution for the SA phase. This approach may improve upon the
previous ones by combining algorithms that are strong on different instance types, and by poten-
tially generating more diverse initial solutions for the simulated annealing phase. Both phases are
executed multiple times, effectively making this a multi-start approach. Even though we did not
do this in our experiments, the algorithm can easily be parallelized by running each pair of random
construction and simulated annealing phases on different cores.

6 Experimental Evaluation

In this section, we present the results of computational experiments that we conducted with the
proposed algorithms. All methods were implemented in Julia 1.8.5 and performed on a cluster
with Intel Xeon E5540 quad-core CPUs with 2.53GHz and 24 GB RAM. Our benchmark instance
set consists of instances already used by Currò [5], Ivanović [14], Ivanović and Urošević [15], and
Filipović et al. [9]. Thus, these instances appear to be the somewhat standard instances for the
empirical evaluation of algorithms for Roman domination problems. The instance set includes
graphs of different classes and sizes, with the largest graph having 1,000 vertices and around
450,000 edges. More specifically, there are six different types of graphs: grid, random, bipartite,
net, planar, and recursive. We evaluate the performance of our greedy construction heuristic when
used with and without the tiebreaker, as well as our GRASP, SA, and SAH approaches. Moreover,
we compare to the VNS from Ivanović and Urošević [15] and the mixed binary integer linear
programming (MBIP) formulation BVVImp2 by Ivanović [13] solved with the Gurobi 10.0.0 mixed
integer linear programming solver [11]. The lower bounds found by Gurobi are used to express the
qualities of solutions obtained by the heuristic approaches in terms of percentage gaps. If z denotes
the value of a heuristic solution and zlb the corresponding lower bound obtained from Gurobi, then
the percentage gap is calculated as 100% · z−zlb

z .

Time-gap cumulative distribution plots are used for comparison, in which the y-axis indicates how
many solutions were solved, whereas the time it took to solve instances to optimality and —if not
possible within the time limit— the relative optimality gap are depicted on the x-axis. This way,
one can observe how many solutions were solved to proven optimality within the time-limit, as well
as the quality of all obtained solutions when compared to the lower bound obtained via the MBIP
model. The results for the VNS algorithm are taken from the respective paper [15], and, thus,
runtimes cannot directly be compared. Full results of the experiments and the problem instances
can be found online1.

6.1 Tiebreaker

In order to examine the performance of the (deterministic) greedy construction heuristic with and
without the tiebreaker, we performed one run of each variant on all instances. Note that, even
when using the tiebreaker, any remaining ties are broken arbitrarily in a deterministic fashion.
Figure 1 displays obtained results in a time-gap plot. Moreover, Figure 2 plots runtimes with the
tiebreaker (Greedy+TB) against the runtimes without the tiebreaker (Greedy) for each instance.
A summary of the results for each type of benchmark instance is given in Table 1. We show these
data in the same fashion as Filipović et al. [9] display their results on (a subset of) the instances.
The table lists the number of instances that were solved to proven optimality (#opt), the number
1 https://www.ac.tuwien.ac.at/research/problem-instances/#Roman_Domination_Problem
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Algorithm 4: Simulated Annealing Hybrid
Input: Graph G = (V,E)

1 xbest ← nothing
2 while time limit not exceeded do
3 xbest_greedy ← deterministic construction heuristic with tiebreaker (G)
4 if xbest = nothing then
5 xbest ← xbest_greedy

6 end
7 while randomized greedy construction phase do
8 x′ ← randomized construction heuristic using threshold τ (G)
9 if |x′| < |xbest_greedy| then

10 xbest_greedy ← x′

11 end
12 if |x′| < |xbest| then
13 xbest ← x′

14 end
15 end
16 x← xbest_greedy

17 T ← Tinit // current temperature
18 while simulated annealing phase do
19 flipVertices ← k vertices selected uniformly at random with replacement
20 remove duplicates in flipVertices
21 x′ ← solution resulting from flipping the flipVertices in x
22 if |x′| < |x| then
23 x← x′

24 if |x′| < |xbest| then
25 xbest ← x′

26 end
27 else
28 d← |x′| − |x|
29 if (random value ∈ [0, 1)) < e−d/T then
30 x← x′

31 end
32 end
33 if T has not changed in |V |2 iterations then
34 T ← α · T
35 end
36 if e−2/T < β and |x| not improved in last k · ϕ iterations then
37 T ← −2k

ln γ
// reheating

38 end
39 end
40 end
41 return xbest

of times the approach achieved the best solution of the displayed approaches (#best), the mean
objective value, the mean time to the best solution found by the approach, as well as the mean
percentage gap. We remark that values listed under #opt do not necessarily represent the numbers
of instances for which optimal solutions were found, but only the numbers of instances for which
optimality could be proven by means of the lower bounds from Gurobi.

Running the construction heuristic with the tiebreaker increases the run-time on average by a
factor of about ten, but significantly more instances were solved to proven optimality when using
it. Moreover, out of the 623 total instances of the benchmark set, the algorithm with the tiebreaker
managed to find better solutions for 211 instances, while reporting slightly worse solutions for only
132 instances and yielding equally good results for the remaining 280 instances. Obtained average
gaps were about 0.5% lower when using the tiebreaker. The largest difference in solution quality
can be observed on the four tested net graphs. Here, the construction heuristic with the tiebreaker
manages to always find the optimal solution, while the basic version obtained significantly worse
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Table 1. Computational results of the greedy construction heuristic with and without tiebreaker.

Grid Bipartite Net Planar Random Recursive All
Method Measure (172 inst.) (135 inst.) (4 inst.) (17 inst.) (288 inst.) (7 inst.) (623 inst.)
Greedy+TB #opt 13 19 4 3 61 7 107

#best 119 97 4 15 249 7 491
mean value 46.60 66.63 80.50 20.65 35.17 56.43 45.28
mean time (ms) 0.72 44.73 3.22 63.74 227.83 52.83 117.57
mean gap (%) 10.35 17.75 0.00 24.38 22.87 0.00 17.94

Greedy #opt 5 15 0 3 58 7 88
#best 88 85 0 14 218 7 412
mean value 47.02 66.99 92.50 20.71 35.47 56.43 45.69
mean time (ms) 0.50 5.64 1.18 5.10 24.01 2.33 12.63
mean gap (%) 11.37 17.69 12.19 24.48 23.17 0.00 18.43

Fig. 1. Time-gap plot of the greedy construction
heuristic with and without the tiebreaker.

Fig. 2. Scatter plot for the run-times of the
greedy construction heuristic with and without
tiebreaker.

results. We conclude that using the tiebreaker within the construction heuristic can make sense,
especially if it is used on graphs with a similar structure as the tested net graphs or if it is used
sparingly, such that the added runtime has no large impact overall. On the other hand, it may not
be well suited for approaches in which the greedy-algorithm is run many times, as one may add
significant run-time for only small improvements.

6.2 Metaheuristic Approaches

The performance of our GRASP, SA, and SAH was evaluated with a two-hour time limit on each
of our 623 problem instances. According to preliminary tests we found the following parameter
settings to be robust choices, which we employed in all successive tests discussed here. The GRASP
algorithm was run with a threshold value of τ = 0.9 and uses the 1-flip neighborhood structure in
conjunction with the next-improvement step-function for the improvement phase. For SA, we chose
the parameter values k = 2, α = 0.95, β = 10−6, γ = 10−4, and ϕ = 2 ·104. The initial temperature
was set to −2

ln 0.03 . The same parameter values were chosen for the SAH algorithm, and we ran the
randomized greedy phase for 2 minutes followed by 8 minutes of the simulated annealing phase
over 12 full rounds, for a total run-time of 2 hours. In the randomized greedy phase, we used a
threshold value of τ = 0.9 for the randomization of the construction heuristic.

The main results of the experiments are summarized in Table 2. Here included are also the results
of Gurobi on the MBIP model. Note that for this latter approach, we do not display the average
time it took to find the best solution, but the average time reported by Gurobi (for a given instance,
this is either the time it took to find and prove optimality, or the time limit). Thus, these times
cannot be directly compared to the times of the heuristic approaches. Moreover, the table includes
the results of Greedy+TB again for a direct comparison. We further display the results of GRASP,
SA, SAH, and MBIP also in the form of time-gap plots for all instances as well as only selected
subsets in Figure 3.
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Table 2. Computational results of the MBIP solved by Gurobi, the greedy construction heuristic with
tiebreaker and our metaheuristics GRASP, SA, and SAH.

Grid Bipartite Net Planar Random Recursive All
Method Measure (172 inst.) (135 inst.) (4 inst.) (17 inst.) (288 inst.) (7 inst.) (623 inst.)
MBIP #opt 172 68 4 8 123 7 382

#best 172 84 4 10 162 7 439
mean value 41.30 63.08 80.50 19.53 33.72 56.43 42.34
mean time (s) 4.57 3745.79 0.01 4041.80 4356.68 0.03 2937.25
mean gap (%) 0.00 12.92 0.00 18.33 19.72 0.00 12.42

Greedy+TB #opt 13 19 4 3 61 7 107
#best 13 21 4 3 91 7 139
mean value 46.60 66.63 80.50 20.65 35.17 56.43 45.28
mean time (s) <0.01 0.04 <0.01 0.06 0.23 0.05 0.12
mean gap (%) 10.35 17.75 0.00 24.38 22.87 0.00 17.94

GRASP #opt 151 53 2 8 111 7 332
#best 151 102 2 17 259 7 538
mean value 41.72 62.72 85.25 18.71 32.85 56.43 41.99
mean time (s) 292.02 889.67 755.81 508.21 434.10 <0.01 492.80
mean gap (%) 0.38 12.14 3.21 16.67 17.82 0.00 11.45

SA #opt 172 66 4 8 117 7 374
#best 172 102 4 12 193 7 490
mean value 41.30 62.59 80.50 19.24 33.27 56.43 42.02
mean time (s) 2.81 787.28 <0.01 998.69 431.47 0.05 398.09
mean gap (%) 0.00 12.72 0.00 17.69 19.49 0.00 12.25

SAH #opt 172 66 4 8 123 7 380
#best 172 124 4 17 262 7 586
mean value 41.30 62.27 80.50 18.71 32.80 56.43 41.72
mean time (s) 36.16 540.57 <0.01 715.74 470.69 0.06 364.24
mean gap (%) 0.00 11.96 0.00 16.67 17.91 0.00 11.33

All

Grid

Bipartite

Random

Fig. 3. Time-gap plots comparing the approaches on different graph classes.

We can observe that the metaheuristic approaches obtained better results than the greedy-heuristic,
achieving much higher scores in the #opt and #best metrics. The only exceptions to this are the
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Table 3. Comparison with the VNS from Ivanović and Urošević [15].

Algorithm #opt mean value mean time (s) mean gap (%)
VNS 218 41.004 113.171 0.163
GRASP 203 41.182 252.933 0.380
SA 230 40.771 55.077 0.048
SAH 231 40.766 33.238 0.000

net and recursive graphs, on which the greedy algorithm already obtains optimal solutions. The SA
approach is strong on grid graphs, achieving the optimal solution on all of them, whereas GRASP
only managed to optimally solve 151 out of 172 instances. Even compared to MBIP, the SA
approach showed promising performance on this graph class. On the random graph class GRASP
achieves the best solutions on 259 instances, and SA on only 193, making GRASP the better choice
for these instances. SAH is the most prospective approach in terms of solution quality, finding the
best solution on 586 instances, better than the MBIP approach that manages 439, GRASP that
manages 538, and SA that manages 490. Furthermore, there were only two instances which the
MBIP approach could solve to proven optimality, and on which SAH was not able to find an
optimum. The mean time to converge to the best solution of a run is lower for SAH than for
all the other metaheuristic approaches on average over all instances, indicating that SAH can in
general obtain better solutions on the tested instances without needing (much) more time. When
an algorithm for a specific graph class, e.g., grid graphs is needed, other tested approaches (in
the case of grid graphs, the basic simulated annealing algorithm) may however obtain solutions of
similar quality in less time.

Finally, we compare our algorithms also to the VNS from Ivanović and Urošević [15] in Table 3. In
their article, only results for instances for which the optimal solution is known are reported, and
thus we also had to restrict the comparison to the respective subset benchmark instances. Note
that in contrast to our other displayed results, the lower bounds used now do not stem from our
MBIP results, but from [15]. Ivanović and Urošević [15] employ a time limit of two hours together
with an early stopping criterion, and report the time it took to obtain the best solution found as
well as the obtained solution value. Their CPU is slightly slower than the one we used, having a
frequency of 2.4GHz compared to ours with 2.53GHz. Unlike for our experiments, Ivanović and
Urošević [15] report results for the best out of 20 independent runs per instance. Nevertheless,
our SA and SAH show clearly better performance on these instances, solving more of them to
optimality in a much shorter mean time. Especially SAH performed particularly well, solving all
instances optimally in the shortest mean time of all tested approaches.

Overall, SAH successfully manages to combine the strengths of the simulated annealing and the
randomized construction heuristic, and is an algorithm with excellent practical performance on all
considered instances.

7 Conclusion

We investigated several heuristic approaches to tackle the Roman Domination Problem and also
compared them to a mixed integer linear programming model solved by Gurobi as well as the VNS
by Ivanović and Urošević [15]. We observed that simulated annealing and GRASP can be applied
as efficient metaheuristics for the problem, as they provided stronger results over our benchmark
instances than the exact and greedy algorithms. The simulated annealing approach showed espe-
cially good results on grid graphs, whereas GRASP prevailed on a class of randomly generated
graphs. Motivated by the individual strengths of these two, we came up with a simulated anneal-
ing hybrid, that interleaves phases of randomized solution construction with solution refinement
according to simulated annealing. In our experiments, this hybrid manages to achieve the overall
best results out of all considered approaches. When comparing our SAH algorithm to the VNS
from Ivanović and Urošević [15], our hybrid managed to solve all considered instances to proven
optimality, and this on average in less time.

Given the impressive results obtained by the MBIP, an interesting direction for future work is
to investigate hybrid metaheuristics that make use of a mixed integer linear programming solver
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for solving smaller subproblems, such as in large neighborhood search. This may be particularly
appealing to address huge instances. Moreover, there are many variants of the basic Roman dom-
ination problem, such as the signed, double, or weak variants. Adapting our approaches for these
seems to be partly easy, but there are also some more challenging questions that would need to be
solved. Finally, evaluating the application of the proposed algorithms on an actual use case from
practice would be interesting.
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Abstract. This extended abstract presents the methodology employed in a Systematic Lit-
erature Review (SLR) that aims to investigate Feature Selection Problem (FSP) and Op-
timization Techniques. The study focuses on understanding the objective function, perfor-
mance evaluation metrics, optimization techniques, and practical applications of FSP. The
methodology section provides an overview of the systematic approach adopted for conducting
the literature review.

Keywords: Short Systematic Literature Review · Feature Selection Problem · Objective Function

1 Methodology

Research Questions The research questions guide the Systematic Literature Review (SLR) [7]
and help structure the investigation [3]. The following research questions were formulated: How is
the objective function of the Feature Selection Problem (FSP) [6] defined in the literature? What
are the performance evaluation metrics used in solving the FSP? What optimization techniques are
employed to solve the FSP? What are the practical applications of FSP across different domains?

Search Strategy and Study Selection For conduct a comprehensive literature review, a sys-
tematic search strategy was developed. The search covered major scholarly databases, including
SCOPUS, Web of Sciences, IEEE Xplore, ScienceDirect by Elsevier, Wiley, and SpringerLink.
The keyword ”feature selection” was used to retrieve relevant articles. The search was limited to
English-language articles published between 2019 and April 20, 2023.

The study selection process involved multiple stages to identify pertinent articles. In one stage,
the database was further refined by selecting only those articles that explicitly mentioned the
”Feature Selection Problem” in their abstracts. This filtering process resulted in a subset of articles,
which underwent additional filtering in subsequent stages. In another stage, specific inclusion and
exclusion criteria were applied to select primary studies specifically related to feature selection
and optimization. The inclusion criteria encompassed studies that focused on feature selection and
optimization, provided a clear definition and explanation of the feature selection problem and the
objective function used, discussed metrics employed for evaluating feature selection performance,
explored techniques or algorithms for solving the feature selection problem, and presented practical
applications of feature selection in various fields. Conversely, exclusion criteria were applied to
studies that did not pertain to feature selection and optimization, comprised surveys, systematic
literature reviews, or reviews solely focused on the topic of feature selection. Initially, a total of
20,343 documents were found. After the rigorous selection process, a final set of 171 documents
met the inclusion criteria and were included in the review.

2 Partial Finding

This extended abstract provides a condensed overview of the main findings and insights derived
from specific sections of the article. It offers a glimpse into the ongoing investigation of feature
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selection within the context of optimization techniques. Based on the current progress, the following
conclusions can be made:

Objective Function The literature analysis revealed different approaches to representing the
objective function in feature selection [6]. These approaches can be summarized as follows:

1. Single-objective functions: These functions focus on optimizing a single evaluation metric
associated with the classifier [10]. However, they overlook the important aspect of feature
reduction. For instance, using accuracy or error rate as the sole objective function does not
address the need for reducing the original dataset. Thus, there is a requirement to treat the
feature selection problem as a multi-objective problem.

2. Multi-objective functions: Multi-objective functions consider both the classifier evaluation
metric and a feature evaluation metric. Two types of multi-objective functions were identified:
• Weighted multi-objective functions: These functions are complex to solve as they involve
balancing multiple objectives simultaneously. Different weights are assigned to each ob-
jective to indicate their importance in solving the problem. Researchers have proposed
various weighted multi-objective functions, where the weights determine the trade-off be-
tween classification performance and feature size [8]. However, altering the weights can lead
to varying results, making it challenging to find the optimal balance.

• Pure multi-objective functions: Pure multi-objective functions treat each objective indepen-
dently without assigning weights. Each objective function is optimized separately[12]. This
approach offers simplicity and independence but presents computational challenges. Recent
trends in the literature indicate a preference for pure multi-objective functions due to their
independence and potentially better results. However, implementing pure multi-objective
functions requires careful consideration of computational complexities.

In summary, single-objective functions have limitations, while multi-objective functions, par-
ticularly pure multi-objective functions, offer advantages in feature selection. Striking the right
balance between classifier evaluation metrics and feature evaluation metrics is crucial. However,
addressing the implementation and computational complexities associated with multi-objective
functions is an ongoing challenge in this research area.

Evaluation Metrics The metric-based analysis of the Feature Selection Problem revealed three
main types of metrics: Classifier-related metrics, Metaheuristics-related metrics, and Feature-
related metrics.

Classifier-related metrics: These metrics relate to the performance of the classifier in using
the subset of features issued by the metaheuristic. In the systematic literature review, 10 different
evaluation metrics related to the classifier were detected. The 10 metrics are the following: Accuracy
[10][2][8][9][5], Error rate [12], Precision [2][9], Sensitivity/Recall [2][5], F-measure/F-score [2][9][5],
Specificity [2][5], Negative predictive value (NPV) [5], Matthew’s correlation coefficient (MCC) [9],
False positive rate (FPR) [2], False negative rate (FNR) [2].

Metaheuristics-related metrics: These metrics are related to the pure performance of the
metaheuristics. In the systematic literature review, 5 different evaluation metrics related to the
metaheuristics were detected this metrics are: Fitness [10][2][8], Computational time [11], Hyper-
volume metric (HV) [12][11], Two-Set Coverage (TC) [12], Inverted Generational Distance (IGD)
[11].

Feature-related metrics: These metrics are purely related to the reduction of the features
of the original dataset. In the systematic literature review, 3 different evaluation metrics related
to features were detected and those are: Feature Selected [2][12], Cost [12], Number of features
selected [10][8][5][9].

Classifier The selection and utilization of classifiers significantly impact the accuracy and relia-
bility of feature selection results. The k-nearest neighbor (k-NN) algorithm is the most commonly
used classifier, followed by Support Vector Machine (SVM). Other classifiers, such as Naive Bayes
(NB), Decision Tree (C4.5 - DT), Random Forest (RF), and Artificial Neural Network (ANN), have
also been explored, demonstrating the diversity of algorithms employed in addressing the feature
selection problem.
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Practical Applications Optimization techniques in feature selection find diverse applications
across different domains. The reviewed articles utilize various datasets, including popular ones from
repositories like the UCI Repository and the ASU scikit-feature feature selection repository (e.g.,
”Ionosphere” and ”Connectionist Bench (Sonar, Mines vs. Rocks)”). These datasets are widely
used, indicating their relevance and suitability for feature selection research in different domains.

3 Intended Contributions

In this work-in-progress systematic literature review (SLR) on feature selection and optimization
techniques, we have made significant progress in understanding the objective function, evaluation
metrics, classifiers, and practical applications of feature selection. However, further research is
needed to fully address the challenges associated with multi-objective functions and explore novel
optimization techniques. This ongoing SLR aims to provide valuable insights and contribute to the
advancement of feature selection methodologies as other similar investigation did [1, 4].
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3. Marcelo Becerra-Rozas, José Lemus-Romani, Felipe Cisternas-Caneo, Broderick Crawford, Ricardo
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Abstract

NP-hard decision problems in which the cost function is a priori unknown to the Decision Maker arise naturally in many

applications. We present a novel algorithm, inspired by Simulated Annealing, that exploits the structural randomness of

Metropolis exploration in order to simultaneously find the optimal solution and learn its cost. As benchmark cases, we test

our algorithm on the Directed Steiner Tree and Traveling Salesman problems. Our results suggest that problems for which

Simulated Annealing works with known costs can be efficiently attacked with our algorithm when costs are unknown.
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Simulated Annealing, stochastic optimization, reinforcement learning.
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1 INTRODUCTION

THE recent years and events lead to a massive development of content-oriented cloud services. The most popular

and voluminous content offered in today’s networks are videos that must be efficiently delivered to end customers.

The objective of the service provider (root) is to optimize the delivery of content to its costumers (terminals). In this

optimization problem the cost is usually assumed to be known (Figure 1, left graph). Yet, in reality it is often unknown

because it depends on many stochastic factors, such as the traffic on the network, the level of demand, and so on (Figure

1, right graph).

Fig. 1. Directed Steiner trees with known and unknown costs.

This is just an instance of a general decision problem in which, ex ante, the Decision Maker (DM) ignores the payoff

of the available actions and has limited resources to discover it. In this note, we show that a natural modification of the

Simulated Annealing algorithm of Kirkpatrick et al. (1983) permits to efficiently solve this conceptually non-trivial problem.

2 KNOWN PAYOFFS: METROPOLIS ALGORITHM AND SIMULATED ANNEALING

Let A be a finite set of actions and u : A → R a known objective function that the DM aims to maximize.1 When the

number of alternatives is small, the DM can just use a brute force comparison-and-elimination algorithm that, after |A| − 1

binary comparisons, finds the optimal alternative.

When the number of alternatives increases, one needs to go beyond this basic algorithm. In particular, one can rely

upon the celebrated Metropolis Algorithm (Metropolis et al., 1953) and its evolution called Simulated Annealing (Kirkpatrick

et al., 1983).

1. It goes without saying that for minimization problems the analysis is similar.
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Metropolis Algorithm: Let β > 0.

Step 0. Choose a ∈ A randomly.

Step n+ 1. Choose b ∈ A randomly.

• If u (b) ≥ u (a), then set a ≑ b.

• If u (b) < u (a), then set a ≑ b with probability eβ[u(b)−u(a)].

Specifically, the random choice at Step 0 is performed by drawing a from an initial distribution µ (·) on A; the one at

Step n+ 1 by drawing b from a Markovian distribution Q (· | a) which depends on the incumbent a.2 The full name of the

algorithm is thus Metropolis Algorithm with inverse temperature β, initial distribution µ and proposal matrix Q. Its key property

is that, if the current state is a, the next state b is determined according to the following transition probabilities

P (b | a) =


Q (b | a)min

{
1, eβ[u(b)−u(a)]

}
if b ̸= a

1−
∑
c ̸=a

Q (c | a)min
{
1, eβ[u(c)−u(a)]

}
else

Thus, the algorithm realizes an aperiodic and irreducible Markov chain with stationary distribution

pβ (a) =
eβu(a)∑
b∈A eβu(b)

∀a ∈ A

Therefore, the long-run frequency with which a is chosen from A is almost surely pβ (a).

The idea of Simulated Annealing is to slowly increase β, while the Metropolis algorithm runs, with the objective of

approaching the limit distribution

p∞ (a) = lim
β→∞

pβ (a) =


1

|argmaxA u|
if u (a) = maxA u

0 else

which concentrates on the maximizers of u on A. In the words of its creators: “At each temperature [here 1/β], the

simulation must proceed long enough for the system to reach a steady state.” Thus, the constant β is a replaced with a

sequence βn of inverse temperatures such that βn ≡ βt0 is maintained constant for n = 0, ..., t0, with t0 large enough to

achieve the stable (empirical) frequency

p̂0 (a) ≈
eβt0u(a)∑
b∈A eβt0u(b)

∀a ∈ A

Subsequently, βn ≡ βt1 is maintained constant for n = t0 + 1, ..., t1, with t1 large enough to achieve the stable (empirical)

frequency

p̂1 (a) ≈
eβt1

u(a)∑
b∈A eβt1

u(b)
∀a ∈ A

and so on, aiming at a long-run frequency

lim
k→∞

p̂k (a) ≈ lim
k→∞

eβtk
u(a)∑

b∈A eβtk
u(b)

= p∞ (a) ∀a ∈ A

2. The distribution Q (· | a) corresponds to the a-th row of a symmetric and irreducible A × A stochastic matrix Q. This matrix describes the

way in which the algorithm explores the landscape A. Irreducibility guarantees full exploration of A, symmetry is intuitive and can be dispensed

with. See Hastings (1970) or Madras (2002) for a textbook treatment.
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as βn diverges (so that βtk diverges too). The sequence {βn}n∈N is called annealing schedule.3

Simulated Annealing: Let βn → ∞.

Step 0. Choose a ∈ A randomly.

Step n+ 1. Choose b ∈ A randomly.

• If u (b) ≥ u (a), then set a ≑ b.

• If u (b) < u (a), then set a ≑ b with probability eβn[u(b)−u(a)].

The algorithm runs until the system “freezes”, that is, a stops changing for a fixed number of consecutive iterations

(or until a given number N of iterations has been performed). The selected alternative is a candidate maximizer for the

objective function u.

The grain of randomness injected in the last line of the pseudo-code allows the DM to escape from local maxima and

explore the actions’ landscape (especially at small values of β). In the next section, we use this explorative feature of the

algorithm to obtain information about u and maximize it, even when u itself is initially unknown.

3 UNKNOWN PAYOFFS: ERGODIC ANNEALING

Now assume that the objective function u is unknown to the DM. In particular, consider the important case when u (a) is

the expectation of the random payoff U (a) of alternative a ∈ A, which is unknown because the DM ignores the distribution

FU(a) of the random variable U (a) itself.

Example A basic example is when each U (a) has Bernoulli distribution with unknown probability of success u (a). □

The initial beliefs of the DM about u are represented by a pair (u0, C0) ∈ RA × NA, where

u0 (a)

represents the ex ante expected payoff assigned to a by the DM and

C0 (a)

represents the DM’s confidence in this evaluation. Intuitively, C0 (a) is the number of “preliminary samples of a” on which

the DM bases his expectations.

Example (continued) Assume there are three alternatives a, b, c. The pair (u0, C0) given by

u0 = (1, 0, 1) and C0 = (1, 1, 1)

is interpreted as follows: the DM sampled once from each distribution FU(a), FU(b), FU(c) and observed the realizations

U (a) = 1 U (b) = 0 U (c) = 1

“Sampling” and “observing” can be factual or hypothetical.

3. Originally, tk = (k + 1)L for some fixed “large” loop length L ∈ N and βtk = (1 + ρ)k β0 for some “small” factor ρ ∈ (0,∞).



5

Analogously, the pair (u0, C0) given by

u0 = (0.5, 0.7, 1) and C0 = (2, 10, 1)

is interpreted as follows: the DM took 2 samples from FU(a) and observed an average value of 0.5 (that is, one success and one failure),

10 samples from FU(b) and observed an average value of 0.7 (that is seven successes and three failures), and 1 sample from FU(c) and

observed a value of 1 (one success).

Note that the same ex ante evaluation of two different alternatives may be based on different information. For instance, the pair

(u0, C0) given by

u0 = (1, 0.6, 0.6) and C0 = (1, 1000, 5)

is interpreted as follows: the DM took 1 sample from FU(a) and observed one success —the DM has almost no information about

u0 (a), 1000 samples from FU(b) and observed six-hunded successes and four-hundred failures —the DM has a lot of information

about u0 (b), 5 samples from FU(c) and observed three successes and two failures —the DM has some information about u0 (c).4 It

seems safe to assume that the DM has no confidence in u0 (a), lots of confidence in u0 (b), some confidence in u0 (c). The fact that

the observation pseudocount C0 (x) represents a degree of confidence about the ex ante evaluation u0 (x) of x ∈ {a, b, c} can be

formalized in a Bayesian way by means of a product of beta priors, but this goes beyond the scope of the present note. □

Given (u0, C0), if an alternative a is selected again and another sample from FU(a) is taken, a new realization υ (a) of

U (a) is observed. The empirical evaluation of a becomes

u1 (a) =
C0 (a)

C0 (a) + 1
u0 (a) +

1

C0 (a) + 1
υ (a)

and of course C1 (a) is now C0 (a)+ 1. For all b ̸= a in A, empirical evaluation and observation count do not change, that

is u1 (b) = u0 (b) and C1 (b) = C0 (b).

The more observations from a are taken, the better the estimate of the expectation of U (a) becomes. This ergodic

property is at the basis of our algorithm.

Ergodic Annealing: Let βn → ∞.

Initialize. Set u ≑ u0 and C ≑ C0.

Step 0. Choose a ∈ A randomly.

Update. Observe U (a)

set u (a) ≑
C (a)

C (a) + 1
u (a) +

1

C (a) + 1
U (a) and C (a) ≑ C (a) + 1.

Step n+ 1. Choose b ∈ A randomly.

• If u (b) ≥ u (a), then set a ≑ b.

• If u (b) < u (a), then set a ≑ b with probability eβn[u(b)−u(a)].

Update. Observe U (a)

set u (a) ≑
C (a)

C (a) + 1
u (a) +

1

C (a) + 1
U (a) and C (a) ≑ C (a) + 1.

4. Again, this “information” can be factual or introspective.
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The only difference with Simulated Annealing is the update routine that allows the algorithm to learn the values as it

explores.

From a purely conceptual point of view one could think of first learning the values of alternatives, then performing

a standard Simulated Annealing procedure. But this would be unfeasible even in cases with relatively few alternatives

(say a Traveling Salesman Problem with 40 cities). In fact, just performing one draw from each distribution would be

extremely costly (40! draws, one for each possible tour), and performing sufficiently many draws until the empirical

averages converge is utterly impossible.

Our approach learns the payoffs and optimizes it simultaneously. This speeds up the search because the DM is not

interested in finding the true payoff of all alternatives, but only an alternative with highest true payoff. In the simulations

below this corresponds to the fact that while the sequence un of Step n evaluations does not necessarily converge, the

payoff of the chosen alternative converges to the true optimal payoff. Our agent is an empirical optimizer, not an empirical

statistician.

4 SIMULATIONS

In this section we benchmark the Ergodic Annealing algorithm for two classical combinatorial problems: the Directed

Steiner Tree problem on graphs (DST), our initial example, and the Traveling Salesman Problem (TSP), in which the

randomness of traffic and viability between two nodes makes compelling the uncertainty in the cost function.

For the DST problem we adapted the Simulated Annealing algorithm of Osborne and Gillett (1991), while for the TSP

we adapted the original Simulated Annealing algorithm of Kirkpatrick et al. (1983). As discussed above, by “adapting,”

we mean augmenting it with an ergodic updating procedure.

4.1 Directed Steiner Tree

The first motivating example for the Ergodic Annealing algorithm is the one mentioned in the introduction and pictured

in Figure 1, which is formally known as the Directed Steiner Tree problem.

In a DST problem, a directed graph G(V,E) with a non-negative cost c(e) associated to each edge e ∈ E is considered.

The objective is sending a packet from a root node r to each of the terminal nodes R, at minimum cost. Each of the |R|

packets is allowed to travel through some intermediate nodes, called Steiner nodes. The cost of the whole operation is

the sum of the costs of the edges used to send all the packets of information, and the goal is to minimize this quantity.5

The subset of Steiner nodes used is a variable in this problem, and the optimal configuration coincides with the minimum

spanning tree of the subgraph of G induced by the root r, the terminals R, and an optimal subset of intermediate nodes.

Coherently with Figure 1, we consider networks with a layered structure, meaning that the vertices can be divided in an

ordered partition {Vl}Ll=0, with the singleton {r} making up the first layer V0 and the set of terminal nodes R making up

the last layer VL. Every edge e = (v, w) in the graph must be such that its vertices are in subsequent layers, that is, v ∈ Vi

and w ∈ Vi+1, for some i ∈ {0, ..., L− 1}.6

This is a highly non-trivial combinatorial optimization problem (indeed, it is NP-hard), and Simulated Annealing is a

very successful approximation scheme used to tackle it. Therefore a DST with unknown costs is a natural candidate to test

the performance of Ergodic Annealing.

5. Note that we can use an edge as an intermediate channel to reach two different terminal nodes, but its cost will be counted only once. This

can be interpreted as having only a fixed “opening” cost of the channel and no capacity constraints.
6. Since the graph is directed, the order of the vertices is important.
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A key step required to run an annealing algorithm for this problem is the selection of feasible moves from one candidate

solution to another.7 There are different ways to do this. We follow the proposal of Osborne and Gillett (1991), which simply

consists in allowing to move one potential Steiner node (v ∈
⋃L−1

l=1 Vl) from the set of used Steiner nodes to the set of unused

nodes, and vice versa. Then one can easily compute the new Steiner tree by computing the minimum spanning tree on the

resulting subgraph by using Edmonds’ algorithm.8

To study and compare the performance of Ergodic Annealing with respect to Simulated Annealing we ran both

algorithms on a test set of 1000 random graphs with the same true costs each time —known for the Simulated Annealing

agent, unknown to the Ergodic Annealing one. Each graph G = (V,E) in the test set has 13 layers (so 11 layers of

potential Steiner nodes), with a maximum of 12 nodes for each non-root layer. The actual number of nodes for each layer

is chosen uniformly at random from {2, ..., 12}. For each v ∈ V , a node from the previous layer is selected randomly and

automatically connected, to guarantee feasibility. All other possible edges in the graph are present with probability 1/2.

The (true) arc costs are drawn uniformly from the interval (0, 1), and the ex ante expected cost of each arc is initialized to

1/2.

Since root and terminals are fixed in the optimal Steiner tree, we define the size of the graph as the number of potential

Steiner nodes. The average size of a graph in the test was 71.3.

In these moderately large graphs, the two algorithms performed quite similarly. Indeed, they reached the same final

configuration on 322 graphs, and the average absolute deviation with respect to the best configuration found9 was 0.04664.

In words, on average the two procedures found solutions whose costs differed by 4.66%, sometimes with Simulated

Annealing being closer to the true optimal solution, sometimes with Ergodic Annealing performing better.

In Figure 2 we present two examples of Steiner trees found by Ergodic Annealing and Simulated Annealing on graphs

from the test set.

Ergodic Annealing finds configurations of similar cost compared Simulated Annealing, even if the problem it faces is

orders of magnitude harder. Simulated Annealing optimizes over a large but finite set of known configuration costs, while

Ergodic Annealing searches for a minimum cost configuration on a space that is potentially infinite, because the true costs

are unknown and are learned on a continuum space.

4.2 Traveling Salesman Problem

The second benchmark studied in this paper is the well-known Traveling Salesman Problem.

In the classical case a list of cities and distances between each pair of cities are given and known, and the objective

is to find the shortest possible route that visits each city and returns to the starting point. Just like the DST, the TSP is

an NP-hard problem in combinatorial optimization, important in theoretical computer science, operations research and

economics.

In our variant, distances are replaced by average travel times, and the objective is finding the fastest route. The Simulated

Annealing algorithm can solve this problem when these travel times are known, the Ergodic Annealing can solve it even

when travel times are unknown.

We ran a simulation over 2000 random instances of TSP, with cities location chosen randomly from the unit square. The

number of cities was selected at random between 30 and 90, with an average size of graphs in the simulation of 59.68. The

7. A move is considered feasible if it transforms a feasible solution into another feasible solution.
8. In this layered version computing the minimum arborescence is particularly efficient, because the graph is a DAG and there are no recursive

calls in the algorithm.
9. The best configuration is the one of lower cost among the two final configurations found by the algorithms.
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Fig. 2. Comparison of Ergodic Annealing and Simulated Annealing on two random DST instances.

performance of the two algorithms on the test was almost identical, with Ergodic Annealing performing at least as well

as Simulated Annealing on 995 graphs. The average absolute deviation with respect to the best configuration found was

1.90%.

This simulation provides an even stronger evidence than the one found with the previous benchmark about the validity

of Ergodic Annealing.

In Figures 3 and 4 we present two examples of optimal routes found by Ergodic Annealing and Simulated Annealing
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on graphs from the test set.

5 CONCLUSION

For a given expected payoff u, Ergodic Annealing (implementable by a DM who ignores u and must learn it from the

environment) performs almost as well as Simulated Annealing (which requires the DM to know u ex ante). Thus, Ergodic

Annealing seems to be a promising extension of Simulated Annealing to decision making under uncertainty.

Fig. 3. Random TSP instance with 40 cities where Simulated Annealing finds a slightly suboptimal route compared with Ergodic Annealing.

Fig. 4. Random TSP instance with 40 cities that produced the same final configuration with both algorithms
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Abstract. Uniformly deployed sets (UDS) are combinatorial objects
that contain n-bit binary words of weight p as their elements and each
pair of such words has at most t ones on the same positions (where t is a
given natural number). In our contribution, we present a fast algorithm
for the construction of UDS and we show some possibilities of their usage
in various areas of computer science. For example, UDS can be used for
increasing the effectiveness of heuristics in optimisation problems.

Keywords: Uniformly deployed set · Optimisation · Location problems.

1 Introduction and definitions

The concept of uniformly deployed sets was introduced and developed in works
[1], [2], [3] and [4]. Our main motivation was an improvement of some meta-
heuristics that are used in the optimisation of location problems.

Let S contain n-bit binary words of weight p (it means that each word has
exactly p 1’s and n− p 0’s). We say that S is a t-uniformly deployed set (where
0 < t < p) if every pair of words x⃗, y⃗ ∈ S has at most t overlapping 1’s.

A similar concept is known in statistics, where combinatorial structures called
block designs are used in the planning of statistical experiments. A block design
on n points with block-size p is an ordered pair (P,B), where P is a set of points
(|P | = n) and B is a set of blocks (|B| = b). An incidence matrix of block design
is n× b matrix with element aij = 1, if point i ∈ P belongs to the block j ∈ B
and aij = 0 otherwise.

Regular uniform block design with parameters n, p and r is a special case
of block design with n elements; each block of which contains p elements and
each element is contained in exactly r blocks. The number of blocks is b =
nr/p. Rows (similarly columns) of the incidence matrix of regular uniform block
design form a t-uniformly deployed set with parameters n, p and appropriate
t ∈ {1, . . . , p− 1}.

In combinatorics, there are known structures called difference sets [5] and
abelian groups are needed to define them. A set X with operation ∗ is called an
abelian group if the following properties hold
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1. ∀a, b ∈ X a ∗ b ∈ X,

2. ∀a, b, c ∈ X (a ∗ b) ∗ c = a ∗ (b ∗ c),
3. ∀a, b ∈ X a ∗ b = b ∗ a,
4. ∃e ∈ X ∀a ∈ X a ∗ e = a,

5. ∀a ∈ X ∃a−1 ∈ X a ∗ a−1 = e.

The best-known abelian groups are cyclic groups Zn with operation ⊕n, where
Zn = {0, 1, . . . , n−1} and ∀a, b ∈ Zn a⊕n b is the remainder after dividing a+b
by n.

The difference set with parameters (n, p, t) is the p-element subset D of the
n-element group X such that every non-identity element of X can be expressed
as a result a ∗ b−1 of elements a, b ∈ D in exactly t ways. Difference sets are
interesting combinatorial objects with many useful properties but, unfortunately,
their construction for given parameters is usually a hard combinatorial problem.

A well-known example of a difference set with parameters (7, 3, 1) is set D =
{1, 2, 4} ⊂ Z7. If we consider all translates of D (sets a⊕7D for a = 0, 1, . . . , 6),
then we obtain the collection of subsets {1, 2, 4}, {2, 3, 5}, {3, 4, 6}, {4, 5, 0},
{5, 6, 1}, {6, 0, 2}, {0, 1, 3}. These subsets form the well-known combinatorial
object called Fano plane (Figure 1). It is easy to check that Fano plane is a

Fig. 1. Diagram of Fano plane.

regular uniform block design with parameters n = 7, p = 3, r = 3 and b = 7.
Rows of its incidence matrix form 1-uniformly deployed set with parameters
n = 7 and p = 3.

0 1 1 0 1 0 0
0 0 1 1 0 1 0
0 0 0 1 1 0 1
1 0 0 0 1 1 0
0 1 0 0 0 1 1
1 0 1 0 0 0 1
1 1 0 1 0 0 0
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Similarly, we can obtain from an arbitrary difference set with parameters (n, p, t)
a t-uniformly deployed set with parameters n and p such that each pair of its
words have exactly t overlapping 1’s.

2 Construction of UDS

The construction of t-UDS with given parameters is described in [3] and [4].
This construction uses voltage and Caley graphs and our method works with the
group Zn and operation ⊕n. In this approach, a crucial task is the construction
of p-element subset D ⊆ Zn. All translates of D (as in the example with the
Fano plane) form a system of n subsets of Zn. Rows of its incidence matrix
form a t-UDS with parameters n, p and appropriate t. Our latest version of the
algorithm (in Python programming language) for the construction of the set D
(less cumbersome than versions described in [3] and [4]) can be seen below:

def nptset(n,p,t):

a = [0,1]

k = len(a)

f = lambda u, v:(u-v) % n

def check(x):

ax = a + [x]

Amn = [f(ax[i],ax[j]) -->

-->for i in range(len(ax)) for j in range(len(ax)) if i!=j]

freq = max([Amn.count(i) for i in range(n)])

return freq <= t

x = 2

while x < n and k < p:

if check(x):

a += [x]

k += 1

x += 1

if k == p:

return a

else:

return ’no solution’

The computational complexity of the algorithm is O(np) for parameters n, p
and t. If we try to find a minimal value t such that t-UDS with parameters n
and p exists, then we need to repeat the algorithm at most p times.

Example 1. We show the construction of t-UDS with parameters n = 7, p = 4
and t minimal possible:
For t = 1, we obtain the answer that there is ’no solution’.
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For t = 2, we obtain the output D = {0, 1, 2, 4}. All translates a ⊕7 D (for
a = 0, 1, . . . , 6) are {0, 1, 2, 4}, {1, 2, 3, 5}, {2, 3, 4, 6}, {3, 4, 5, 0}, {4, 5, 6, 1},
{5, 6, 0, 2} and {6, 0, 1, 3}. The incidence matrix of this system of subsets is

1 1 1 0 1 0 0
0 1 1 1 0 1 0
0 0 1 1 1 0 1
1 0 0 1 1 1 0
0 1 0 0 1 1 1
1 0 1 0 0 1 1
1 1 0 1 0 0 1

and it is easy to consider that the rows of this matrix form 2-UDS for n = 7 and
p = 4.

3 UDS and the location problems

The concept of t-Uniformly Deployed Sets was primarily suggested for location
problems (typically the weighted p-median and the weighted p-center problem).
Each feasible solution of these problems can be represented as an n-bit word of
weight p. We test t-Uniformly Deployed Sets for the weighted p-median problem.
In this section, we show that t-UDS allow us to go deeper in the space of feasi-
ble solutions than randomly chosen sets for the neighbourhood search heuristic
algorithm with multiple starts (we denote it by NS-MS). This heuristic can be
described as follows:
A network G = (V,H, d, w) (where |V | = n) and a set M of n-bit binary words
with weight p be given.

Mhist = M , Mend = ∅;
WHILE (M ̸= ∅)

FOR (w ∈ M)
w′ = ba(w);
IF w′ ̸= e THEN M = (M − w) ∪ w′, Mhist = Mhist ∪ w′;

ELSE M = M − w, Mend = Mend ∪ w;
bestsolution=ARGMAX{f(w), w ∈ Mend};

Set Mhist contains all n-bit binary words of weight p which occurred in M
during the computation. The objective function (value of weighted p-median) is
denoted by f(). The function ba(w) represents the neighbourhood search heuris-
tic which starts with the word w and the strategy: choose the best admissible
neighbour. (The neighbour of w is a result of simple interchange.) The output
of this heuristic is a word w′ such that w′ is a neighbour of w, f(w′) > f(w)
and w′ /∈ Mhist, or conversely w′ is the empty word (denoted by e) if there is
no neighbour of w with such properties. Set Mhist contains end words obtained
during computation. Where the word w is called an end word if ba(w) is an
empty word.
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A chain of length k is an ordered k-tuple (w1, w2, . . . , wk) of n-bit binary
words of weight p such that wi+1 is the neighbour of wi and f(wi+1) < f(wi)
for i = 1, 2, . . . , k − 1.

In our computational experiments, we used graphs which serve for weighted
p-median testing. For each such graph, a t-UDS with the lowest possible value
t was constructed and a random set of n binary n-bit words of weight p was
generated. Both sets were used as starting set M in the NS-MS heuristic. For
each word w from these sets, we computed the length of the chain

(w, ba(w), ba(ba(w)), . . . , w∗),

where w∗ is an end word. For each set, we can compute the average length of the
chain. Random permutations of the vertex set allow us to repeat computations
several times for the same graph and testing sets. The results of the tests can
be seen in Figure 2. Blue columns represent the average length of the chains for
graphs denoted by numbers 1, . . . , 11 which are obtained from t-UDS and orange
columns represent the average length of chains obtained from the randomly
generated set of starting solutions. The parameters of the tested graphs can be
seen in Table 1. All tested graphs are from [6].

Fig. 2. Average length of chains.

graph number 1 2 3 4 5 6 7 8 9 10 11
n 100 100 100 100 100 100 100 200 200 200 200
p 5 10 20 10 10 20 20 20 20 40 40

4 Collections of UDS

Our next goal is to develop an algorithm for the construction of a collection of
UDS with parameters n and p, where p = 1, . . . , n − 1. Such collections can be
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used in problems, in which a set of feasible solutions can be represented by all
n-bit binary words. For example, the covering problem is a good candidate for
using a collection of UDS. In coding theory, we have the constructions of binary
linear (n, k) codes for appropriate k, in which each pair of coding words has the
maximal possible Hamming distance. This construction does not allow to control
a number of words of the given weight. Another possibility is the collection of
UDS:

{U1, U2, . . . , Un−1},

where Up is tp-UDS with parameters n, p and appropriate tp (for p = 1, 2, . . . , n−
1). We must note that the maximal possible Hamming distance (minimal possible
t) is provided by this approach only for the pairs of words from the same set Up.
A disadvantage of this approach is that the numbers of words of weights i and
j are the same. Various (but determined) frequencies of words of given weights
are guaranteed if we use a collection of sets:

{U1,1, U2,1, . . . , Un−1,1} .

It means that we construct p sets Up,1, . . . , Up,p of words of weight p, if p ≤ n/2.
For n/2 < p > n, we have n − p sets of weight p. The cardinality of each set is
n. Hence we have pn ((n− p)n respectively) words of weight p in the collection.

Example 2. For n = 8, we have 1, 2, 3, 4, 3, 2, 1 sets of weights 1, . . . , 7. It means
that in the collection we have 8, 16, 24, 32, 24, 16, 8 words of given weights. For
p = 4, we have 4 sets, which can be constructed from D1 = {0, 1, 2, 4}, D2 =
{0, 1, 2, 5}, D3 = {0, 1, 2, 6}, D4 = {0, 1, 3, 4} and their translates a⊕8 Di.

In general, we can start with a set D1 of voltages. From D1 we obtain D2, from
D2 we have D3, etc. Algorithmic construction of Di+1 from Di is as follows:
Let n andDi = {a1, a2, . . . , ap} be given. We try to replace ap by values ap+i < n
and we check if we obtain t-UDS for given t. If not, we continue with replacing
of pair (ap−1, ap) by pairs (ap−1 + i, ap + j) (where ap−1 + i < ap + j < n). If it
is necessary, we continue with triples, quadruples etc. If we do not find t-UDS,
then we increase the value t and repeat the previous algorithm.

5 Conclusions

In our contribution, we study the usage of t-Uniformly Deployed Sets in location
problems. We show that the neighbourhood search algorithm is able to search
a larger part of the space of feasible solutions if we start with t-UDS. We also
show the construction of a collection of UDS. Our future research plan is to use
these collections in reliability analysis, artificial neural networks (computation of
significance of neurons, estimation of the number of neurons in layers, etc.) and
in studying of properties of boolean functions. We also prepare a new method
for the construction of uniformly deployed sets of permutations which we would
like to use in the heuristics for the travelling salesman problem.
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1 Introduction

Most of the farm field operations are scheduled quite imprecisely or, even worse, determined ad
hoc. Following intuitionally and empirically handcrafted schedules can lead to suboptimal harvest
time. As a consequence, it can affect harvest effectiveness by reducing the total amount of yield
and increasing the amount of unnecessary waste, as well as its efficiency by imposing a longer
harvest horizon than required or by making harvest intensity and labor force engagement unevenly
distributed over the horizon.

Results from our previous study [1] suggest that by proper planting and harvest scheduling,
there is room for significant improvement in waste reduction and consistent harvest intensity. Our
study was inspired by the Syngenta Crop Challenge in Analytics 2021 (the challenge) [2]. The
aim of the challenge was to determine desired planting and harvest schedule for the farm field
whose crop is divided into populations. Each population represents a management unit that will be
treated individually and uniformly in any aspect. For each population, the allowed planting time
window and expected yield are known. Afterward, based on the weather forecast, it is possible to
derive time-window during which the population should be harvested. Finally, we have defined a
limit on the amount of weekly harvested yield that can be adequately processed and stored while
any surplus beyond that would be wasted.

Some other papers discuss slightly different solution approaches for a problem proposed at
the Challenge [3–5]. However, all proposed decision frameworks have certain specificities. They
all incorporate integer-linear problems (ILP) solved by exact off-the-shelf solvers and the multi-
objective nature of the problem has been treated either by aggregation of multiple objectives as
a weighted sum or by iterative or sequential exploitation of models as part of a broader decision
framework.

Here, we simplify the optimization process and approach it with a single run of a multi-objective
metaheuristic method. This enables us to produce and analyze Pareto fronts of solutions with vari-
ous effectiveness and efficiency and to deal with instances unmanageable for exact solvers. The opti-
mization problem has been approached with two, in some sense complementary, metaheuristics. We
examined adaptive large neighborhood search (ALNS) [6] as a model-driven single-solution-based
metaheuristic and non-dominated sorting genetic algorithm II (NSGA-II) [7] as a population-based
data-driven metaheuristic. We provide our preliminary results, which show that ALNS consistently
and significantly outperforms NGSA-II.

2 Methodology

Given a set of populations P and a set of weeks comprising harvesting horizon W , our problem
formulation is as follows:

F1 =
∑
w∈W

|qw − C| (1)

F2 = |{w ∈ W : qw > 0}| (2)
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qw =
∑
p∈P

hqp · 1w([tp]), ∀w ∈ W (3)

ep ≤ tp ≤ lp, ∀p ∈ P (4)

The first objective function F1 expresses the effectiveness of a schedule and it is calculated as
the sum of deviations between weekly harvested quantities qw and the stated storage capacity C.
The second objective function F2 expresses the schedule efficiency and it is equal to the number
of working weeks, i.e. the number of weeks with a positive harvested quantity.

Constraints (3) are used to determine weekly harvested quantities qw, for each week w ∈ W ,
based on selected harvesting time tp for a population p ∈ P and its expected yield hqp. Since tp
takes real values, we consider that a population p would be harvested in a week w if an indicator
function 1w([tp]) yields 1, i.e. if a rounded value of tp equals to w. Constraints (4) ensure that each
population p ∈ P is harvested within its feasible time window [ep, lp].

We solved the proposed problem using two well-known metaheuristics, ALNS and NSGA-II.
For the ALNS application, we designed five domain-specific neighborhood operators, where each
of them was tailored to favor a particular desirable characteristic of the schedule. Operator one
is a rebalancing operator designed to reschedule populations from highly stressed weeks to least
stressed weeks. Operator two is a stability operator designed to equalize the amount of harvested
quantities between consecutive weeks. Operator three is an emptying operator which finds two
consecutive weeks with the lowest total harvested quantity and empties the less stressed one into
another one. Operator four is also an emptying operator. This operator will empty a week which is
preceded by an already emptied one. Operator five is a capacity operator rescheduling populations
for weeks that are loaded over storage capacity C.

As for the second metaheuristic, we used real-coded constrained NSGA-II without any modi-
fications. We experimented with two different ways of initial population generation. By our first
approach, called random, the initial population is created by uniformly sampling value for each
gene tp inside its allowed time window [ep, lp]. By our second approach, called smart, we select
our initial population as a subset of 100 solutions out of 500 initially produced distinct solutions
generated by the previous run of the ALNS for the same case.

3 Results

We synthesized 20 different case studies, which may have n ∈ {500, 1000, 2000, 3000, 4000} pop-
ulations and planning horizon l ∈ {26, 52, 78, 104} weeks long. For each case study, we run each
algorithm 25 times. For each case, we combined all solutions nondominated individually per opti-
mization run and derive the overall Pareto front of all solutions on the case level.

Figures 1 and 2 show combined Pareto fronts for cases with the highest and the lowest ratio
between the number of populations and the duration of the planning horizon. Solutions produced
by ALNS are depicted as ▲, or ■ if they are overall nondominated. Individually nondominated
solutions produced by NSGA-II are depicted as x for random initialization or ⋆ for smart initial-
ization. Bounding boxes of overall nondominated solutions are presented as red rectangles. Figures
emphasize a strong dominance of ALNS over the NSGA-II approach. All overall nondominated
solutions are produced by ALNS. NSGA-II has never produced any solution with a relatively low
F2 objective value and a significant portion of individually optimal solutions produced by NSGA-II
turns out to be out of the bounding box surrounding overall nondominated solutions. On the other
side, individually nondominated solutions produced by ALNS are close to overall nondominated
solutions.

The presented results are consistent with all other our results. For each case, all overall non-
dominated solutions have been produced solely by ALNS. Pareto fronts generated by ALNS are
firmly consistent from run to run and they converge relatively fast, in about 10000 to 15000 itera-
tions. On the other side, all individually nondominated solutions produced by NSGA-II are from
the first generation, which indicates that populations don’t improve themselves by evolution at all.
That also explains why smart initialization strategy provides better results than random strategy
since all solutions from its first generation are actually previously produced by the ALNS.
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ALNS dominance over the NSGA-II is particularly obvious regarding the F2 objective func-
tion, where NSGA-II performed poorly all the time. That is in accordance with our most recent
experimental results, which are beyond the scope of this paper. Results indicate that offsprings’ F2
objective values consistently degrade in comparison to parents’ until they finally reach a certain
poor quality standard where their values retain.

Fig. 1: Pareto front for n = 4000 and l = 26 Fig. 2: Pareto front for n = 500 and l = 104

4 Conclusion

In this paper, we outlined a bi-objective formulation of the Crop Plant Scheduling Problem pro-
posed in our previous work [1]. We adapted two metaheuristics to solve the problem. Our ex-
perimental results indicate a very strong dominance of ALNS over NSGA-II. Since those results
are quite indicative, our future work shall be focused on gaining deeper insights into the reasons
for such dominance. More precisely, we shall analyze the structure of the F2 objective function
in relation to the operators integrated into the ALNS and NSGA-II and derive assumptions on
what makes ALNS capable and NSGA-II incapable to provide good Pareto fronts for such a simple
objective function.
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Abstract. A directed feedback vertex set (DFVS) of a directed graph is a subset of vertices
whose removal makes the graph acyclic. Finding a DFVS of minimum cardinality is the goal
of the directed feedback vertex set problem, an NP-hard combinatorial optimization problem.
We first consider two mixed integer linear programming (MILP) models for this problem,
which, when solved with Gurobi, are effective on graphs of small to medium complexity but
do not scale well to large instances. Aiming at better scalability and higher robustness over a
large variety of graphs, we investigate a large neighborhood search (LNS) in which a destroy
operator removes randomly chosen nodes from an incumbent DFVS and one of the MILP
models is used for repair. Regarding the destroy operator, finding a best degree of destruction
is challenging. A main contribution lies in proposing several selection strategies for this
parameter as well as a strategy for choosing the more promising MILP model for repair. We
evaluate the performance of the MILP models and different LNS variants on benchmark
instances and compare the approaches to each other as well as to state-of-the-art procedures.
Results show that our LNS variants yield clearly better solutions on average than standalone
MILP solving. Even though our approaches cannot outperform the state-of-the-art, we gain
valuable insights on beneficially configuring such a MILP-based LNS.

1 Introduction

The directed feedback vertex set problem (DFVSP) is a classical combinatorial optimization problem
in which the goal is to remove from a given directed graph as few vertices as possible in order to make
it acyclic. More specifically, a directed feedback vertex set (DFVS) of a directed graph is a subset of
vertices that contains at least one vertex of every simple cycle in the graph, and we are interested
in a DFVS of smallest cardinality. The removal of such a DFVS from the graph in conjunction with
the incident arcs results in a directed acyclic graph (DAG). This problem is one of the first problems
shown to be NP-complete by Karp [1]. The DFVSP is a variant of the feedback vertex set problem
(FVSP), which only considers undirected graphs. Exact algorithms for the (D)FVSP are limited in
their practical applicability to instances of rather small and medium size due to the complexity
of the problem. Research thus has also focused on approximation algorithms [2], parameterized
algorithms [3,4], or graph classes for which efficient algorithms are possible [5,6]. Moreover, in the
last decade, heuristics and especially (hybrid) metaheuristic procedures have also been proposed
for addressing large (D)FVSP instances [7,8,9,10]. These approaches do not guarantee optimality
but aim at providing good or near-optimal solutions in a reasonable time also for larger instances.
Compared to exact methods, this often makes them more suitable for real-world applications, such
as deadlock detection and recovery in operating systems, program verification, and VLSI chip
design, where oftentimes a short runtime is more important than achieving optimality.

We follow this line of research and more specifically investigate diverse variants of large
neighborhood search (LNS) in which partially destroyed solutions are repaired by means of mixed
integer linear programming (MILP). Large neighborhood search [11,12] is a prominent metaheuristic
that has already been successfully applied to a multitude of challenging combinatorial optimization
problems including routing, scheduling, and location problems [11,12,13]. In our LNS, we apply a

0This project was financially supported by Honda Research Institute Europe GmbH.
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neighborhood structure that is based on destroying a current solution by moving multiple vertices
from the current DFVS back into the corresponding DAG, thus introducing cycles again. For
making the solutions feasible again, i.e., repairing them, we propose two MILP formulations for the
DFVSP, which we solve with a leading general purpose MILP solver. These MILP formulations
are also evaluated as standalone solving procedures, and we will see that they perform reasonably
well for small to medium sized instances but can hardly be applied to large instances. The LNS
framework therefore is a natural and promising choice to exploit the power of the MILP approaches
in order to also solve large instances heuristically. Our main goal is to gain insights on beneficial
configurations and on the performance of such a hybrid LNS. We investigate various strategies for
selecting the degree of destruction for the LNS and also a technique for dynamically choosing the
MILP formulation for each instance. The resulting variants are tested on three sets of benchmark
instances and compared to each other as well as to two state-of-the-art solving approaches from the
literature. This work is based on the first author’s master’s thesis [14].

In the next section, we review related work before formally defining the DFVSP and introducing
the two MILP formulations in Section 3. In Section 4, our graph reduction procedure is explained
and Section 5 deals with the construction heuristic and local search. Our proposed LNS variants are
presented in detail in Section 6, and Section 7 discusses the computational study and experimental
results. Finally, we conclude this article and give an outlook on possible future work in Section 8.

2 Related Work

In the literature, various types of FVSPs are considered, which generally differ in two dimensions:
graph orientation and involvement of weights. Oftentimes, the main concepts of solving approaches
that were designed for one variant can be adapted and applied to the others. This is also true for the
closely related feedback arc set (FAS) problem for directed graphs, whose goal is to find a subset of
arcs of minimum cardinality that contains at least one arc of every cycle in the graph. This problem
can be efficiently reduced to the DFVSP and vice versa. One approach to the FAS problem on
unweighted graphs is given by Noughabi and Baghbani [15] who propose a genetic algorithm. They
represent solutions as vertex orderings where all backward arcs constitute a FAS. This is possible
due to the relationship of the FAS problem and the linear ordering problem because the latter
can be reduced to the complement of the FAS problem, the maximum acyclic subgraph problem.
Baharev et al. [16] also make use of this relationship and introduce an integer programming (IP)
model for the FAS problem on edge-weighted graphs, which employs triangle inequalities to encode
a minimum cost ordering of the vertices. The authors further propose two other IP models, which
are both based on a minimum set cover formulation of the FAS problem, with the second model
being an extension of the first one by adding lazy constraint generation.

For the undirected FVSP on vertex-weighted graphs, Cutello et al. [7] introduce a metaheuristic
that combines an immune algorithm and a local search (LS) procedure and is specifically designed
for large-scale instances. Melo et al. [9] tackle the same problem by solving its complement, which
is the maximum weighted induced forest problem, and they introduce the first two compact MILP
models for this problem. One formulation is flow-based and the other is based on an adaptation of a
lifted version of the Miller-Tucker-Zemlin (MTZ) constraints. As both formulations are designed for
connected and directed graphs, they are also applicable to the DFVS problem. Based on these MILP
models, Melo et al. propose two variants of a hybrid metaheuristic that combines a multi-start
iterated local search with a MILP-based local search procedure. In the next section, we will adapt
the MTZ-based formulation to obtain one of our two MILP models for the unweighted DFVSP,
which results in the first compact model for this problem to the best of our knowledge.

Considering heuristic approaches, there have not been many for the unweighted DFVSP until
recently. The first ones were greedy heuristics and a greedy randomized adaptive search procedure
(GRASP) by Pardalos et al. [17]. Galinier et al. [8] propose a local search procedure with an efficient
neighborhood structure based on a new solution representation of the DFVS. Instead of minimizing
the size of the DFVS, they focus on its complement and try to maximize the size of a contained DAG
that is represented by a topological ordering. On top of the LS, the authors describe a simulated
annealing (SA) algorithm called the SA-FVSP. This approach is extended by Tang et al. [10] with
nonuniform neighborhood sampling (NNS) resulting in an algorithm called SA-FVSP-NNS. In this
approach, new priority and sampling functions are applied to guide the search. The priority function
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considers vertex degrees in a greedy manner similarly as in Cai et al. [18]. We will also utilize this
concept in our procedures.

Recently in 2022, the development of new heuristic approaches for the unweighted DFVSP was
sparked by the Parameterized Algorithms and Computational Experiments (PACE) challenge3,
which was one of the inspirations for our work. We also participated with an early version of our
solving procedures, which, however, only ended up in the bottom third of the ranking. This paper
describes improved variants, but as the challenge took place at the same time as the development
of our solving approaches, we were not able to already learn from its results. Two of the three best
performing heuristic solvers, one by Swat [19] and one by Du et al. [20], apply a transformation
of the DFVSP into a vertex cover problem as well as diverse extensions of SA-FVSP. The solver
by Bathie et al. [21] employs two greedy local search heuristics based on vertex swapping and
perturbations of topological orderings.

What all of the finally leading solvers from the challenge have in common is the application of
partly advanced graph reduction operations to decrease the size of the input graph and possibly
partition it into unconnected components that can be independently addressed. Five popular
reduction rules were already introduced in 1988 by Levy and Low [22]: IN0, OUT0, IN1, OUT1,
and LOOP. Lin and Jou [23] proposed another three called PIE, CORE, and DOME. Six rules were
also described by Fleischer et al. [4], but three of them were already covered by Levy and Low. An
important property of all these operations is that they preserve optimal solutions. In their work on
the FAS problem on unweighted graphs, Park and Akers [24] suggest four reduction operations,
two of which also coincide with rules by Levy and Low.

3 Problem Formalization and MILP Models

The unweighted DFVSP we consider in this work is defined on a directed graph G = (V,E) with
vertex set V and arc set E. We only consider simple graphs that do not have parallel arcs or
self-loops. The subgraph of G induced by a subset of vertices V ′ ⊆ V is G[V ′] = (V ′, E′) with
E′ = E ∩ (V ′ × V ′) being the set of arcs from E whose endpoints are both contained in V ′. A
directed feedback vertex set (DFVS) is a subset F ⊆ V of vertices that contains at least one vertex
of every simple cycle in G. Let F = V \F be the complement of F , then the induced subgraph G[F ]
is a DAG if and only if F is a valid DFVS of G. The goal of the DFVSP is to find a DFVS F ∗

of minimum cardinality, i.e., |F ∗| ≤ |F | for every DFVS F ⊆ V . By these definitions, solving the
DFVS problem is equivalent to finding a vertex set F ∗ of maximum cardinality such that the
induced subgraph G[F ∗ ] is acyclic.

We introduce two mixed integer linear programming formulations for the DFVSP. The first
model is inspired by the subtour elimination constraints from Miller, Tucker, and Zemlin and is
therefore called the MTZ-based formulation. The other formulation uses so-called cycle elimination
constraints (CECs), which prevent cycles in the DAG corresponding to the DFVS.

3.1 MTZ-Based Formulation

This formulation is derived from the MILP model by Melo et al. [9] for the vertex-weighted,
undirected FVSP. In order to consider the aspect that we are dealing with a directed graph as input,
we add an artificial source vertex s to V and arcs from s to all other vertices. Thus, graph G = (V,E)
is augmented to the new graph Gs = (Vs, Es) with Vs = V ∪ {s} and Es = E ∪ {(s, v) : v ∈ V }.
Our MTZ-based formulation actually models the complement of the DFVSP in which the aim is
to find a maximum cardinality subset F ⊆ V whose induced subgraph is acyclic. We use binary
decision variables yv, v ∈ V , indicating with value one that v ∈ F , i.e., the vertex is selected for the
DAG, and consequently with value zero that v is part of the DFVS. Moreover, continuous variables
Φv ∈ [0, |Vs| − 1] represent a potential for each vertex v ∈ V . In a valid solution, the potentials have

3https://pacechallenge.org/

https://pacechallenge.org/
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to increase with the distance of v to s. The MTZ-based formulation of the DFVS problem is then:

min |V | −
∑
v∈V

yv (1)

s.t. Φu − Φv + |Vs| · yv ≤ |Vs| − 1 ∀(u, v) ∈ Es (2)

yv ≤ Φv ∀v ∈ V (3)

ys = 1 (4)

Φs = 0 (5)

yv ∈ {0, 1} ∀v ∈ V (6)

0 ≤ Φv ≤ |Vs| − 1 ∀v ∈ V (7)

The objective function (1) minimizes the cardinality of the DFVS, which corresponds to maximizing
the number of vertices v ∈ V with yv = 1 constituting F and thus belonging to the DAG.
Constraints (2) are the MTZ inequalities ensuring that for each arc (u, v) whose target vertex v
is chosen for F , the potential Φv of v must be larger by at least one than the potential Φu of
vertex u. In this way, the potentials of the nodes on any path originating from s will always increase
monotonically and cycles are prevented. The linear programming relaxation is strengthened by
Inequalities (3), which explicitly enforce that the potential of selected vertices (except s) is at least
one. Equations (4) and (5) define that the source node has to be connected and has potential zero.
Lastly, (6) and (7) define the domains of the decision variables.

We remark that the original MILP formulation from Melo et al. [9] additionally uses binary
variables for all arcs and the MTZ inequalities are based on these. We also considered such an
approach in a corresponding model for the DFVSP, but computational experiments with Gurobi
indicated that the more compact MTZ-based model presented above performs significantly better;
see the first author’s thesis [14] for details. Therefore, we only consider this variant in the following.

3.2 CEC-Based Formulation

The CEC-based formulation builds on cycle elimination constraints, which explicitly state for each
cycle in the input graph G that at least one of its nodes must be removed to avoid this cycle. The
model uses the same binary variables yv, v ∈ V , as before, where yv = 1 indicates that vertex
v ∈ F , i.e., is part of the DAG and, thus, not included in the DFVS, and is stated as follows:

min |V | −
∑
v∈V

yv (8)

s.t.
∑
v∈C

yv ≤ |C| − 1 ∀C ∈ C (9)∑
v∈K

yv ≤ 1 ∀K ∈ K (10)

yv ∈ {0, 1} ∀v ∈ V (11)

The objective function (8) is the same as in the MTZ-based formulation and minimizes the number
of vertices included in the DFVS. The cycle elimination constraints are given by Inequalities (9),
where C denotes the set of all simple cycles in G, and C ∈ C is one of these cycles represented as
the set of the involved vertices.

As there can be exponentially many cycles in an input graph, the model has exponentially many
such constraints. For practically solving the model, we therefore rely on lazy constraint generation
for dynamically adding the cycle elimination constraints during the solving process only for cycles
actually occurring in intermediate integral solutions. Such cycles are identified by breadth-first
search. To speed up the solving process, we statically include from the beginning constraints for
2-cycles, i.e., cycles of length two. To do so, we derive a graph G2cyc that consists of the vertices
involved in 2-cycles and has an undirected edge for each 2-cycle in the original graph. We then
strengthen the initial model by greedily identifying a set K of cliques in this graph G2cyc. From
each such clique, only a single vertex can appear in any DAG, which is expressed in our model by
Inequalities (10). Note that a DFVS in G has to be a vertex cover in G2cyc and adding constraints
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for cliques is a common way to strengthen formulations for the vertex cover problem. For a detailed
description of the greedy construction of cliques, we refer to [14]. The domain of the decision
variables is given by (11).

4 Graph Reduction

Our solving procedure starts with the preprocessing of the input graph, where various measures
for graph reduction are taken, with the main step being the repeated application of five reduction
rules. We adopt all five rules by Levy and Low [22] as mentioned in Section 2, but we combine
the rules IN0 and OUT0 into a single step called IN/OUT0. Our fifth reduction operation called
SCC-reduction is inspired by the work of Park and Akers [24]. It is based on the partitioning of the
graph into its strongly connected components (SCCs) and directly solving all subproblems with less
than three vertices. This rule as well as the LOOP rule are able to identify a part of the vertices
belonging to a minimum DFVS, which are then stored in a preliminary DFVS and added to the
final solution in the end. As all these operations preserve optimal solutions, their application order
can be arbitrary. Nevertheless, a certain order can be beneficial for performance reasons and is in
our work as follows: IN/OUT0, IN1, OUT1, LOOP, and SCC.

After the exhaustive application of these reduction rules, the remaining graph is partitioned
into its SCCs, which are then sorted according to non-decreasing size. If their number exceeds 1000,
we successively merge SCCs in the obtained ordering into subgraphs of up to 100 vertices to reduce
memory consumption. All resulting subproblems are processed separately and sequentially, each
starting with another repeated application of the five reduction rules. Afterwards, components with
exactly three remaining vertices are always cliques that are dealt with by randomly selecting two
vertices that are also added to the preliminary DFVS. Subgraphs or SCCs with up to 100 vertices
are also handled differently from bigger ones as they are directly solved with the MILP solver. This
is also the reason why we chose the size of the merged subgraphs in case of many SCCs to be at
most 100 as the small SCCs would have fallen into this category as well. The remaining bigger
SCCs are then passed to the LNS.

5 Construction Heuristic and Local Search

An initial solution for the LNS is generated by the consecutive execution of a construction heuristic
(CH) and a local search. The employed CH combines the concept of topological orderings with the
greedy function by Cai et al. [18]:

h(v) = deg−(v) + deg+(v)− λ · |deg−(v)− deg+(v)| (12)

for vertices v ∈ V , where deg−(v) and deg+(v) denote v’s out- and in-degrees, and we use the
recommended balancing factor λ = 0.3. According to this heuristic, vertices with lower h-values
are less likely to belong to a minimum DFVS, or in other words, they are more promising to be
contained in a maximum topological ordering. Thus, CH sorts the vertices in non-decreasing h-value
order and greedily builds a topological ordering of maximal cardinality, skipping all vertices that
would introduce an arc to an already selected vertex. In the end, the vertices that are not contained
in the topological ordering constitute a valid DFVS and provide an initial solution.

This solution is then possibly further improved by applying LS with the one-flip neighborhood
structure, which is based on moving one vertex from the current DFVS to the corresponding DAG if
no cycle is introduced. In this LS, the vertices in the DFVS are again considered in non-decreasing
h-value ordering. When accepting a solution, we additionally store the position of the last selected
vertex in the ordering to avoid repeated checks of already rejected candidate solutions in the
following iterations of the LS. This enhancement does not only strengthen the guidance of the local
search but also speeds up the search process.

6 Large Neighborhood Search

Large neighborhood search [11,12] is a prominent LS-based metaheuristics where the key idea
is to apply pairs of destroy and repair methods for identifying promising candidate solutions. A
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neighborhood is here implicitly defined by the applied destroy operator, which usually selects a
subset of the problem’s decision variables to be re-optimized while the remaining variables are kept
as set in the current incumbent solution. In this way, a subproblem is induced, for which the repair
method tries to find an optimal or promising heuristic solution. As in classical LS, we accept new
solutions that are better than the incumbent while worse solutions are discarded. Besides, we use a
combination of two termination criteria: a runtime limit and a limit on the number of consecutive
iterations without improvement.

6.1 Enlarge-DAG Neighborhood Structure

In our enlarge-DAG neighborhood, the basic idea is to remove vertices from a current DFVS, which
implies to add them and their original incident edges back into the corresponding DAG. The
obtained graph is then larger but in general not acyclic anymore. A DFVS subproblem is induced,
which is typically smaller than the original DFVSP and therefore should be easier to solve.

More formally, let F be a valid DFVS and the vertex set of the corresponding DAG be denoted
by D = V \ F . The destroy method selects a k-element subset A ⊆ F of the DFVS. The destroyed
solution is then represented by F ′ := F \A and the DAG is augmented to graph G′ = G[D′ ] with
D′ := D ∪A. In this induced DFVS subproblem, the repair operator has to remove a set F ′′ ⊂ D′

of vertices to obtain a DAG again. The repair method first applies the graph reduction rules from
Section 4 again to possibly reduce G′. As the MILP models we proposed in Section 3 can be highly
effective on smaller instances, we ultimately apply them as repair methods.

Still, we need to clarify crucial details on how the selection of the nodes in the destroy operation
is done and how the MILP solver actually is applied. In the following paragraphs, we propose
different options for these, which we will later experimentally evaluate and compare.

6.2 Degree of Destruction

Parameter k specifies the number of vertices selected in the destroy operation and thus controls
the degree of destruction. Selecting a suitable value is crucial for an LNS procedure to perform
well. If k is too small, the neighborhood is too restricted and the benefit of applying a powerful
repair is mitigated. On the other hand, a too large degree of destruction can result in too complex
subproblems. The repair method may then either require too long for single iterations or may
yield unsatisfactory results in limited time. Due to the importance of this parameter, we consider
different techniques for choosing k as described in the following.

Fixed Degree. In the simplest case, we use a constant value k throughout all LNS iterations and
for all DFVSP instances. We denote this strategy by fixed degree(·) where · stands for the selected
value.

Random Selection. Similar to Ropke and Pisinger [25], k is here randomly selected at each LNS
iteration from a certain range. While not every choice of k will be ideal in any situation, the hope is
that this random selection makes the LNS less sensitive to occasional bad choices and thus generally
more robust.

Dynamic Selection. In this more advanced technique, we choose the degree of destruction for a
DFVSP instance in dependence on properties of the instance graph and the MILP formulation used
for repair, i.e., defining rules to predict suitable fixed values for each instance. To do so, we build
on experience gained from earlier performed test runs with the fixed degree strategy for a range of
different values k. We refer to Section 7 and [14] for the details on how these experiments were
performed. More specifically, we consider the following five strategies for the dynamic selection.

#2-cycles. In the results for the fixed degree strategy, we observed that the number of 2-cycles
in the input graphs has a substantial impact on how promising different values for k in general
are. Making use of these results, we came up with a partitioning of the numbers of 2-cycles into
seven consecutive ranges, for which we identified different values for k to yield the best average final
solution values. Ties were broken in favor of the smallest k. As the most suitable values also depend
significantly on whether the MTZ- or CEC-based model is used for repair, we also distinguish
between these as second dimension.
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best triple. For this strategy, we preselect for each MILP formulation three values for k, called
best-mean, mode, and most-best, which performed best over all fixed degree strategy tests in different
senses. Best-mean denotes the degree of destruction that achieves the best mean solution quality
just as above but now over all test instances. The mode value was selected by identifying for each
instance all k-values that find a solution of smallest known size, taking the smallest in each case,
and then determining the mode of these values over all instances. Similarly, most-best is the smallest
k for which in general the most solutions of smallest size, hence the best solutions, were found. The
LNS then selects in each iteration one of these three values at random.

#2-cycles best triple. This variant combines the above two approaches. Thus, we reuse the classifi-
cation of the graphs into one of the seven number of 2-cycle ranges and the distinction between the
used MILP models, and utilize individually derived best-mean and most-best values for k, from
which we again select randomly in each LNS iteration.

#2-cycles regression. Here, we performed a regression to obtain a function yielding the degree of
destruction in dependence on the number of 2-cycles. As the distribution of the number of 2-cycles
of our benchmark instances as well as the distribution of the instance-best values for k are rather
skewed, we found it most meaningful to perform a linear regression over the base-10 logarithms of
the numbers of 2-cycles and the base-10 logarithms of the k-values that performed best for each
instance. In simplified form, this resulted in

k =

{
15.85 · z0.365 for the MTZ model

20.14 · z0.433 for the CEC model,
(13)

where z is the the number of 2-cycles. The k-value determined by this function for a given DFVSP
instance is then used in each LNS iteration again.

#vertices regression. For this strategy, we performed a regression over the number of nodes |V |
of the graph and the best k-value for each instance. Again, we more specifically applied a linear
regression over the base-10 logarithmic values of both. This led to

k =

{
0.2917 · |V |0.808 for the MTZ model

0.1159 · |V |1.004 for the CEC model.
(14)

6.3 Element Selection

Aside from the degree of destruction, it is also important how elements are chosen in the destroy
method as this also impacts the speed of convergence, diversification, and intensification of the
search. Remember that in our destroy method, we denoted by A the set of vertices that are selected
for removal from the DFVS. Our selection again makes use of the heuristic function h(v) given
in Equation (12). However, as a purely greedy selection would lead to a too narrow search and
stagnation, we choose each vertex for A by tournament selection. Preliminary experiments indicated
that a tournament size of three is a robust choice, which we apply throughout this work.

6.4 Dynamic MILP Selection

We consider two ways of determining which MILP formulation is used in the repair operator
of the LNS: preselecting one without any knowledge or choosing it in dependence on instance
characteristics as described in the following. Most importantly, we observed differences in the
average performance of the MILP formulations as repair operator for various instances, which seem
to be linked to the product of the number of 2-cycles and the density of the graphs. Similarly to the
#2-cycles strategy for the selection of the degree of destruction, we therefore determined ranges for
the values of these products, in which one of the two MILP models performed better than the other
in terms of final solution qualities. A general conclusion for the largest product values is that in the
context of the LNS, the CEC-based model is usually the better choice, while for the standalone
application the MTZ-based model is on average more beneficial. Detailed results can be found in
Chapter 5.6.3 of [14].
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7 Computational Study

All experiments were performed on single cores of a cluster with Intel Xeon E5540 processors with
a memory limit of 23GB. Our solving procedures were implemented in Julia 1.7.1, and we used
Gurobi 9.5.14 as MILP solver in single-threaded mode with a memory limit of 20 GB. Each run had
a general time limit of 550 s whereof at most 60 s are used for the LS to improve the initial solution.

We use three existing benchmark instances sets, which all consist of simple, directed graphs
without any self-loops or multi-edges. Two of the data sets are taken from the heuristic track
of the PACE 2022 challenge5 and one set6 comes from Pardalos et al. [17]. We will refer to the
two sets from PACE 2022 as pace-public and pace-private and to the third as fsp-data. The sets
pace-public and pace-private consist of 100 instances each, and the graphs have quite different sizes
and structures with |V | ∈ {843, . . . , 2394385} nodes and |E| ∈ {2103, . . . , 5105039} arcs. These
instances were mostly generated using KaGen7 [26], a set of generators for network models, and
five graph models, but also contain real-world instances. The fsp-data set consists of 40 smaller
graphs which are divided into four subsets with 50, 100, 500, and 1000 vertices, respectively. Each
subset contains ten randomly created instances of varying density.

Our main evaluation metric is the solution quality, which is calculated for a solution F of an

instance with a best known solution F ∗ as 100% |F∗|
|F | . Besides, we employ the geometric mean for

averaging the solution qualities over all instances of a benchmark set. Both is adopted from the
ranking method used in the PACE 2022 challenge. For the pace-public instances, we utilize the
smallest solutions recorded by the PACE 2022 challenge as best known solution values. As the
submitted solutions for the pace-private instances are not accessible, we have to rely on our own
results8 for this data set. For the fsp-data benchmark set, the best known solution values8 are
derived from the results reported by Pardalos et al. [17], Galinier et al. [8], and Tang et al. [10].

7.1 Comparison of MILP Models in Standalone Solving

Before employing the proposed MILP models within the LNS, we have a look at their standalone
solving capabilities for the pace-public instances. As for the LNS, we initially apply our graph
reduction procedure to each input graph. In case that the reduction yields multiple subproblems, we
split the allowed computation time equally among the subproblems and solve them sequentially. If a
subproblem is solved to optimality before its assigned time is used up, the spare time is evenly split
and distributed over the remaining subproblems. For the CEC-based formulation, we additionally
use a time limit for the construction of the 2-cycle constraints as this part may already need too
much time for the largest instances. Following preliminary tests, we decided on half of the total
time allotted for the solving of a (sub-)instance. We observe that over the whole benchmark set,
models MTZ and CEC show similar performances with MTZ being about 2.34 percentage points
better in terms of the geometric mean but CEC finding more proven optimal solutions, as shown in
Table 1.

As for the LNS an initial solution is always created by CH+LS, we also evaluate the impact
of warm starting the standalone MILP solving with solutions from CH+LS. Table 1 and Figure 1
show that providing such initial solutions is clearly beneficial for the MILP solving. There is less
variance in the results produced with the warm starts, no solution has less than 45% of the best
known solution values, and the solutions exhibit an overall higher quality. The difference between
the performances of the CEC- and MTZ-based formulations in terms of average solution quality
decreases to less than one percentage point.

Formulation CEC achieves now on average 93.43% quality and outperforms MTZ with an
average of 92.58%. The main reason for the significant improvement of especially CEC seems to
be linked to the fact that this model performs particularly poorly on a small number of instances.
There, the MILP solver returned the solutions from CH+LS but could not further improve on them.

4https://www.gurobi.com
5https://pacechallenge.org/2022/tracks/#heuristic-track
6http://mauricio.resende.info/data/index.html (feedback set problem)
7https://github.com/sebalamm/KaGen
8https://www.ac.tuwien.ac.at/files/resources/results/DFVSP/DFVSP-benchmarks-results.csv

https://www.gurobi.com
https://pacechallenge.org/2022/tracks/#heuristic-track
http://mauricio.resende.info/data/index.html
https://github.com/sebalamm/KaGen
https://www.ac.tuwien.ac.at/files/resources/results/DFVSP/DFVSP-benchmarks-results.csv
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Fig. 1: Box plots showing the solution qualities of stand-
alone MILP solving without (pure) and with warm starts
(CH+LS) on pace-public instances.

Table 1: The geometric mean of the
solution qualities of standalone MILP
solving without (pure) and with warm
starts (CH+LS).

Formulation
Avg. Solution
Quality [%]

Best Known
Solutions

MTZpure 84.93 18
MTZCH+LS 92.58 18

CECpure 82.59 38
CECCH+LS 93.43 38

7.2 Comparison of LNS Variants

Now, we evaluate various configurations of the proposed LNS with the enlarge-DAG neighborhood.
We consider the different selection strategies for the degree of destruction and the two alternative
MILP models for the repair. All experiments are first performed on the pace-public data set and in
order to test the generalization capabilities of our dynamic selection strategies, we further apply the
approaches to the pace-private data set. The overall time limit is again 550 s per instance. Graph
reduction is applied, and if the graph is split into independent subgraphs, the time limit is again
distributed as described above for the standalone MILP solving. Moreover, we terminate the LNS
also after 50 consecutive unsuccessful LNS iterations. In this case, we expect no or only minor
further improvements, and time is probably better spent for solving successive subproblems. Gurobi
is now given up to 90 s for solving each model to repair a solution. If it fails to find an optimal
solution within the first 60 s, the optimality gap is increased to 0.5% for the remaining optimization.

Regarding the degree of destruction, we started with investigating the fixed degree and random
selection approaches. For fixed degree, we considered 15 different values from 25 up to 100000, and
for random selection the range to randomly choose from was decided to be {5, . . . , 1000} following
results of preliminary tests. We tested the resulting variants with both the MTZ- and the CEC-based
formulations on the pace-public benchmark set and compared them in terms of the average solution
quality. Figure 2 illustrates the results and Table 2 shows average solution qualities of some of
the best performing approaches over the whole pace-public benchmark set. When using CEC, the
highest average solution quality of 95.10% is measured for k = 75 whereas the MTZ formulation
peaks at 93.42% with k = 25. The average performance of the random selection lies right in between
as both combinations with the two MILP formulations achieve a higher mean than fixed degree(25)
with MTZ and a lower mean than fixed degree(75) with CEC. This shows that fixing the value of k
for all DFVSP instances to a generally best value is not always advantageous as different instances
benefit from different degrees of destruction. Note that in comparison to the standalone MILP
results, especially those without CH+LS, we can already see a significant advantage of the LNS
variants. They achieve improvements of up to twelve percentage points compared with the MILP
solving without warm starts and in the range of two to three percentage points compared with the
MILP warm start approaches.

We now move on to our dynamic strategies for selecting the degree of destruction as presented
in Section 6.2, where we make use of the results gained from the fixed degree tests. Table 3 shows
average solution qualities and how often the best known solutions were achieved for the LNS using
the five different dynamic selection strategies in conjunction with either the CEC model, the MTZ
model, or the dynamic model selection strategy.

It turns out that on average, the approaches employing the CEC-based model always achieve
better results than the corresponding ones with the MTZ-based model. We also observe that not
all combinations of the MILP models with the dynamic selection strategies for k perform better
than the random or fixed degree selection in terms of the average solution quality. This illustrates
that even rather simple selection techniques can provide good solutions. However, the best average
solution quality is found by the #2-cycles strategy for both MILP models, with a mean of 96.15%
for CEC and 94.57% for MTZ. The best triple strategy when employing the CEC-based formulation
achieves 32 best known solutions, which is by far the most and may be linked to the possibility of
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Fig. 2: Box plots showing the solution qualities of
fixed degree and random selection approaches, each with
MTZ (blue) and CEC (red), on the pace-public instances.

Table 2: The geometric mean of the
solution qualities for the pace-public
instances.

Selection
Strategy

MILP
Avg. Solution
Quality [%]

fixed degree(25) MTZ 93.42
CEC 94.20

fixed degree(75) MTZ 92.92
CEC 95.10

random MTZ 93.72
CEC 94.87

using very different values for k up to 75000. Such a high value can result in total re-optimization
done in the repair operator and this might also be the reason why this strategy does not perform
as well on average because it leads to large subproblems that are frequently also too hard to solve
with the MILP solver.

When combining the dynamic selection of the employed MILP model with three of the dynamic
selection strategies for the degree of destruction, we are able to improve the average solution
quality for two of them compared to the corresponding variants with a preselected formulation.
The combination with the #2-cycles strategy shows the best performance out of the three with a
mean solution quality of 96.21% and 15 best known solutions for the pace-public data set, as given
in Table 3. Regarding the average solution quality, this is the overall best achieved result for this
benchmark set, which validates the application of the dynamic selection of the MILP formulation.

In order to test the generalization capabilities of the dynamic selection strategies to other
DFVSP instances, we have a look in particular at the pace-private data set. We again examine the
geometric mean of the solution qualities and the number of found best known solutions, which are
shown in Table 3 in the columns labeled pace-private. The observed mean values illustrate that the
approaches using the MTZ-based formulation have a worse average performance than the others,
with the exception of the best triple combination where MTZ slightly outperforms CEC. However,
the best triple strategy achieves the lowest average solution quality of all CEC-based approaches,
although it again finds the most best known solutions. In terms of mean values, two of the three
variants employing the dynamic selection of the MILP formulation achieve improvements and the
combination with the #2-cycles strategy again obtains the highest value with an average of 98.96%.
Overall, we see similar results for the pace-public and pace-private data set, which confirms that
our selection strategies generalize well.

This is also reflected in the observed results for the fsp-data set, as given in Table 3. The
#2-cycles strategy in combination with the CEC-based model achieves the highest average solution
quality and CEC-based approaches again achieve higher means than MTZ-based ones. The dynamic
MILP selection is also superior to the MTZ model but it performs worse than solely using CEC
models, which is in contrast to the results for the two pace data sets and indicates room for
improvement of this selection strategy.

Lastly, we compare our LNS variants also with two state-of-the-art solving approaches for
the DFVSP, which are the simulated annealing based methods SA-FVSP by Galinier et al. [8]
and the newer SA-FVSP-NNS by Tang et al. [10]. As we do not have access to the respective
implementations, we have to rely on the results reported in these works for the fsp-data benchmark
set. Table 3 shows derived average solution qualities and numbers of obtained best solutions at the
bottom. As Tang et al. [10] claim to have re-implemented the SA-FVSP from Galinier et al. and
tested independently, the table also lists corresponding results in line SA-FVSP [10]. Unfortunately,
there is a strong discrepancy in the results for SA-FVSP originally reported by Galinier et al. and
later by Tang et al. for their re-implementation, for which no explanation is given. Thus, all these
results need to be taken with care. In comparison to our LNS, the results reported by Galinier et al.
are significantly better, while our results clearly dominate those reported by Tang et al. for both,
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Table 3: Mean solution qualities and number of found best known solutions of the LNS variants for
three benchmark sets and of the SA-based approaches from the literature.

MILP-based LNS Algorithms Average Solution Quality [%] Best Known Solutions

Selection Strategy Formulation pace-public pace-private fsp-data pace-public pace-private fsp-data

#2-cycles MTZ 94.57 97.25 95.49 13 17 15
CEC 96.15 98.83 96.37 12 26 18

dynamic 96.21 98.96 96.01 15 26 15

best triple MTZ 93.68 96.48 93.38 13 15 15
CEC 94.53 96.33 94.77 32 39 19

#2-cycles best triple MTZ 94.34 97.10 95.54 13 17 15
CEC 95.84 97.48 96.23 17 27 19

#2-cycles regression MTZ 93.89 95.83 94.80 8 12 15
CEC 95.62 97.53 95.71 15 25 18

dynamic 95.63 97.44 95.57 14 21 15

#vertices regression MTZ 93.62 95.81 94.53 6 10 15
CEC 94.81 96.77 95.58 9 27 18

dynamic 94.80 96.79 95.42 9 20 15

SA Algorithms

SA-FVSP [8] 99.77 27
SA-FVSP [10] 63.24 1
SA-FVSP-NNS [10] 70.40 1

SA-FVSP as well as SA-FVSP-NNS. The performance gap between our approach and SA-FVSP [8]
on the fsp-data set might be linked to our focus on the mostly substantially larger instances in
pace-public and pace-private. Note also that it is unclear how the SA-based approaches scale to
these larger instances and thus, more experiments with these approaches would be highly desirable.

8 Conclusion and Future Work

We proposed two MILP models for the DFVSP, one based on Miller-Tucker-Zemlin inequalities and
one based on cycle elimination constraints. Both are effective for graphs up to a certain complexity
but do not scale well to larger instances. Therefore, we investigated an LNS framework in which a
MILP model is utilized for repairing solutions. Applying a suitable degree of destruction is crucial
for the performance of the LNS, and consequently we proposed different selection strategies for
this parameter. Among these are five dynamic strategies that exploit results obtained by tests with
fixed values. Additionally, we also suggested a dynamic selection strategy for the MILP model to
apply. Incorporating these strategies into the LNS framework resulted in multiple variants, which
we evaluated on three benchmark sets.

Experiments with standalone MILP solving show that the MTZ model performs best in terms of
average solution quality when no initial solution is provided, whereas the CEC model is superior in
the case of warm starts with CH+LS. Using the CEC model within the repair operator of the LNS
also leads to a higher mean quality than employing the MTZ model. The different LNS variants
achieve average solution qualities that are up to 12 percentage points higher than those of standalone
MILP solving. Regarding the selection strategies for the degree of destruction, even rather simple
techniques such as random selection provide solutions of good quality but are clearly outperformed
by some of our dynamic selection strategies, in particular #2-cycles and #2-cycles best triple.
Combining the dynamic selection techniques with the dynamic selection of the MILP model leads
to further improvements and to the overall best performing LNS variant for two benchmark sets.

There is still room left for improvement. With regard to the results of the PACE 2022 challenge,
we assume that extending the graph reduction with even more sophisticated rules would be beneficial.
Moreover, adopting ideas from the state-of-the-art simulated annealing based approaches, e.g., by
trying to improve solutions from the MILP by a fast local search, appears promising. Last but
not least, also more advanced machine learning approaches from the field of automated algorithm
configuration can be applied.
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Abstract. We implement AntClust, a clustering algorithm based on the chemical recogni-
tion system of ants and use it to cluster images of cars. We will give a short recap summary
of the main working principles of the algorithm. Further, we will describe how to define
a similarity function for images and how the implementation is used to cluster images of
cars from the vehicle re-identification data set. We then test the clustering performance
of AntClust against DBSCAN, HDBSCAN and OPTICS. Finally one of the core parts in
AntClust, the rule set can be easily redefined with our implementation, enabling a way for
other bio-inspired algorithms to find rules in an automated process. The implementation can
be found on GitLab 3

1 Introduction

In this work we describe the principle and usage of AntClust, a clustering algorithm based on
the chemical recognition system of ants, which was developed by Nicolas Labroche, Nicolas Mon-
march´e and Gilles Venturi [1].

The clustering algorithm’s general idea is based on ant’s chemical recognition system. Ants form
colonies where many individuals help the colony to survive by maintaining it. To prevent harm from
intruders the individual ants of a colony have developed a mechanism to recognize their nestmates.
Labroche et al. refer to the sources [3,4] for more information. Generally the nestmate recognition
is based on odors. These are individual to every ant, meaning that every ant has its own odor.
Additionally, every ant maintains an odor template which is generated based on its encounters with
other ants. If two ants meet, they will recognize each other’s odors and if the odors are similar
enough - the ants ”like” to smell each other - they will accept, know each of them belongs to
the same colony. Rejection can happen if the odors do not match the template. As the odor, the
template is individual to every ant. It is constantly updated during the encountering of other ants.
Thus there is no global colony template and the whole identification process is decentralized. It
is only defined in the sum of the different templates carried within every ant and is a dynamic
process, subject to constant change.

The algorithmic idea from Labroche et al. is to create artificial ants which will be initialized with
a certain genetic. This artificial genetic is a data tuple of a data set, e.g., an image. Based on
this genetic, the ant will define its own template for recognizing potential nestmates and repel
intruders. This will generate artificial ant colonies or differently framed, it will form clusters. We
implement the described algorithm using Python and use our implementation to cluster images of
cars, taken by public surveillance cameras. In this clustering task, the different images of a distinct
car form one particular cluster. Images are taken from the vehicle re-identification (VeRi) data
set [7]. Clustering images is not an easy task since clustering needs a similarity measure between
its data tuples. For this we construct a concept for a similarity function that work on images and
use it in our implementation.

3 https://gitlab.com/Winnus/antclust
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This paper is structured as follows. First, there will be a general description of the algorithm -
which is a summary of the original paper - in section 2. In the following section 3, we will describe
our approach to construct a similarity function that works on images. So then, the obtained results
and the clustering performance will be shown in section 4. Finally, there is a general discussion
about the algorithm, its implementation and possible improvements as well as thoughts on how to
improve/combine it with other bio-inspired and evolutionary-based approaches in section 5.

2 AntClust Theoretical Framework

This section is a summary of the original AntClust paper [1]. It explains how AntClust works and
how the algorithm is structured. The AntClust algorithm can be summarized into the sub actions
in table 1.

Table 1. AntClust algorithmic steps

Phase

1 initialize ants

2 initialize ant templates

3 randomly meet ants and apply meeting rules

4 shrink ant colonies

5 re-assign ants with no colony

These sub actions will now be described one after another.

For this section, it will be assumed that the data set to perform the clustering algorithm is a
very simplistic one, having just one feature. This feature is just a real number between 0 and 1.
Therefore one tuple from the set would be just a number. This simplifies in order to understand
the working principle of AntClust.

Phase one is the initialisation of the ants. To represent the data set as an ant colony AntClust
will create artificial ants where each ant will correspond to one distinct data tuple from the data
set -meaning in our example, the data set [1,2,3] will be represented by three ants, each holds one
number as their genetics-. Inside the computer these ants are program objects, an instance of a
certain class. Every ant has their own attributes.

· Genetic of an ant is defined as one data tuple from the data set.
· Label of an ant indicates to which colony or cluster the ant belongs.
· Template is distinct to every ant. The template is a real number 0 ≤ x ≤ 1 and is used to
estimate whether another ant is accepted during a meeting or not. The template is dynamic
and will evolve over time.
· Age is an indicator of how many meetings the ant has had with other ants during the meeting
phase of the algorithm.
· M is an estimator, 0 ≤M ≤ 1, that reflects how successful the ant is during its meetings with
other ants. If the ant is not very well accepted during its meetings, M will decrease
· M+ is an estimator, 0 ≤M+ ≤ 1, which reflects how well the ant is accepted inside its nest /
colony. This estimator is therefore updated whenever the ant is meeting with another ant and
is reset to zero if the ant loses its label.
· Max(Sim(ant, ·)) is the maximal similarity obtained during a meeting with another ant. Here
”·” means all other ants an ant has met.
· Sim(ant, ·) is the mean similarity between this ant and all the ants this ant has met.
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To initialize an ant and finish phase 1, the parameters will be set as follows:

· Genetic ←− ith tuple of the data set.

· Label ←− 0, Age ←− 0, M ←− 0, M+ ←− 0.

· Max(Sim(ant, ·)) ←− 0, Sim(ant, ·) ←− 0.

· Template ←− 0, will be initialized directly in the next step.

Initialisation of the template is done in phase 2, where the template of an ant is defined by

template←− Sim(ant, ·) +Max(Sim(ant, ·))
2

The template serves the function of determining a distance in by which the ants should accept each
other or not. It is a reference that estimates how far ants can be - in a distanced manner - away
from each other but still belonging to the same colony. To initialize it, the ant will have meetings
with randomly selected ants. The number of meetings can be freely defined, but Labroche et al.
suggest that it is calculated 4. After these meetings, the ants will have formed their template and
the algorithm can now continue with phase 3.

In phase 3, two ants are randomly chosen and meet each other. Meeting in the sense of AntClust
means that a rule set is applied. The rule set given by Labroche et al. is defined below. Given rules
will be applied one after another. If no rule matches, then nothing will happen. It is assumed that
there is an anti and an antj with their corresponding variables xi,j .

· New colony creation rule (R1):
If(labeli = labelj) and Acceptance(i, j) then a new colony will be created by defining a new
label labelnew and this label will be assigned to the ants
labeli,j ← labelnew.
If the ants do not accept each other, R6 is applied.

· Ant with no label is assigned to existing colony (R2):
If(labeli = 0 ∧ labelj ̸= 0) and Acceptance(i, j)
then labeli ←− labelj . This rule applies symmetrically if the condition is reversed.

· accepting of colony mates (R3):
If(labeli = labelj) ∧ (labeli ̸= 0) ∧ (labelj ̸= 0) and Acceptance(i, j)
then increase Mi,Mj ,M

+
i ,M+

j .
Increasing means x← (1− α) · x+ α, where α = 0.2.

· not accepting of two colony mates (R4):
if(labeli = labelj) ∧ (labeli ̸= 0) ∧ (labelj ̸= 0) and Acceptance(i, j) = False, increase Mi,Mj ,
decrease M+

i ,M+
j .

Decreasing means x← (1−α) ·x, where α = 0.2. Additionally, the ant with the smaller colony
integration value - which is anti if(M

+
i < M+

j ) or antj if the condition is reversed - loses its
label (label← 0) and does not belong to a colony anymore.

· meeting of colony different ants (R5):
if(labeli ̸= labelj) ∧Acceptance(i, j) decrease the colony size estimator Mi,Mj . The ant with
the lower estimator will change its label and belongs to the colony of the other ant.

· Default rule (R6):
If none of the above rules apply, nothing will happen during the meeting of the two ants.

4 The iteration amount can be computed by 0.5 · α ·N , where N is the number of ants, i.e. data tuples
inside the data set. α = 150 was tested by Labroche et al. and found as the most general optimal value.
For some data sets better results can be obtained by tuning the parameter.
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The above rules give a working framework to form clusters as explained now. In the very beginning
all ants are initialized with no label - i.e. label ← 0. Thus when two ants meet in the beginning,
mostly R1 will be applied. This will create a lot of little clusters containing only two ants. Once
more and more ants have got a label assigned through R1, it becomes more likely that R2 is applied
and thus, the initial formed clusters begin to grow. If two ants belong to the same cluster, there
are two cases: they accept each other or they do not. In the first case, R3 will be applied which will
increase the cluster size estimator M and the colony integrity estimator M+, which makes sense
since it seems that the colony is quite big if two randomly chosen ants belong to the same colony,
accepting each other means that the colony is still in a good integrity state. In the second case,
R4 will be applied as the colony mates do not accept each other. This will increase the colony size
estimator since the colony must be relatively big if two randomly chosen ants belong to the same
colony and decrease the integrity estimator M+ since the two ants did not accept each other but
belong to the same colony, suggesting the integration of colony members is relatively low. If two
ants meet that do not belong to the same colony but accept each other then R5 is applied which
will, over time, lead to the ability that smaller colonies - where many of these are initially formed
in the beginning via R1 - getting integrated into the bigger colonies. For all other cases, the default
rule is applied and thus nothing happens.

One thing not explained until now is the acceptance function Acceptance(anti, antj). It will return
true or false based on the comparison of the ants templates against their similarity and is defined
by

Acceptance(anti, antj)↔
(Sim(anti, antj) > templatei)∧
(Sim(anti, antj) > templatej)

Where Sim(anti, antj) is the similarity, 0 ≤ similarity ≤ 1. A similarity of 1 means that the two
ants are completely similar, a similarity of 0 means they are anti similar. The similarity function
needs to be defined based on the data set AntClust is running on. Remember that each tuple
of the data set defines one ant by defining the genetics of that ant, letting each ant represent
one data tuple inside the set. If the data set is the simplistic one described above - just numbers
between zero and one - a similarity function would simply be Sim1d(x, y) = 1− |x− y|. Therefore
Sim(anti, antj) would simply extract the genetics of the ants - which is then a single number for
every ant representing one data point inside the data set - and put it into Sim1d() to compute
the similarity. In a more sophisticated data set, each tuple of the set might contain more than one
feature and these features might not be just numbers but vectors. For each feature, the user would
need to define and tell AntClust which similarity function should be used. The mean similarity
from all used similarity measures will thereafter be used to compute the total similarity of two
ants.

Sim(anti, antj) =
1

nsim
·
nsim∑
w

Simw(xw, yw)

Where nsim is the number of similarity measures or features, Simw() one specific similarity function
for the data type w, xw and yw the wth feature of the data tuple extracted from the ant genetic,
where xw is extracted from anti and yw from antj .

With the above similarity definition it is possible to run the algorithm on any data set if a similarity
function can be specified by the user.
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Fig. 1. Adjusted Rand Index (ARI) score for the self generated float data set (A) and image data set (B).
The X-axis represent the number of clusters. The Y-axis shows the amount of data tuples in each cluster.
This means that for each amount of clusters on the X- axis, all amounts of data tuples on the Y axis are
tested in a clustering test. The ARI score is shown on the Z-axis. Here a score of 1 indicates a perfect
clustering - found labels match exactly the ground truth labels - where a score of 0 indicates a random
labeling of the data. (C) shows the 20 best matching features between two images of the same car from
the VeRi data set.
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3 Proposed Method

In most cases, clustering is performed on numerical data. However, we apply clustering on images 5.
The images we cluster are images of cars from the vehicle re-identification (VeRi) 6 data set. This
set contains 50.000 images of 776 vehicles captured by 20 different cameras. A re-identification
of a vehicle takes place if all images of one distinct vehicle are labeled into the same cluster.
This is the task for the clustering algorithm. To achieve this task, a clustering algorithm uses a
distance function or metric which tells how similar or anti-similar two data tuples are. For numerical
values, there exist many metrics and the most common used are the Manhattan or the Euclidean
distance. On images, distance metrics are not trivial to define. The similarity of an image might
not be defined by comparing the pixel values of each pixel and calculating the difference. However,
pictures usually contain certain points of interest, so-called features. For example, an image of the
sky might mostly contain blue parts, which are not very interesting when comparing the picture.
Yet an interesting part might be a bird flying through the sky. To detect such features there exist
many different feature detection methods. One well-known feature detection method is the Harris
Corner Detection algorithm which will detect the parts of the image where corners cross. Harris
corner detection has problems when the scale of the image changes. There exit other more robust
and faster methods like Scale-Invariant Feature Transform (SIFT) or Speeded-Up Robust Features
(SURF). However, these methods are patented. A more performant and not patented method
comes from the developers of the open source computer vision library OpenCV 7. Their method
is called Oriented FAST and Rotated BRIEF (ORB), where BRIEF stands for Binary Robust
Independent Elementary Features [5]. The method is implemented in OpenCV and is free to use
for everyone.

We use the ORB features to define a distance metric on images with it. Features of images are
image specific and can be compared to each other. By comparing the features - which is usually
done using the Manhattan norm - one retrieves a distance between features. Thus it is possible to
define a similarity metric for images with them. OpenCV contains feature matchers which allow
to compare the features of the images. A brute force matcher (BF) will compare each feature
of the first image to all features of the second image by using a specified norm. There are more
advanced methods for comparing image feature like the Fast Library for Approximate Nearest
Neighbors (FLANN) matcher, which will utilize different algorithms to find the best matching
descriptors. We used the brute force matcher - as it fast on multi core CPU’s - in combination with
the hamming norm to find distances between the features. These distances can then be used to
evaluate the similarity between two pictures by comparing how many features from the first image
can be found in the second image and how far the distance between the features is. We only used
the distance of the best matching feature. This means that from each picture, only the distance
from the best matching feature is used to define the distance metric of two images. We know
that this is problematic as if, for some reason, the feature exists in the two images but these are
generally not similar, e.g. the same street sign is present in both images but the images show two
completely different cars. Using more features for distance calculation would need more tuning as
distances between the features vary to a high degree and as such, it is not easy to normalize them
correctly between zero and one - which is needed for AntClust. As such, by using more features
there was a high mismatch in the similarity function, which did not always return 1 if the images
showing the same car. The score was far below 1 as scaling did not work properly. This is a major
problem and for gaining better results, it should be addressed as discussed in the final section 5.

5 An image cluster library using traditional clustering methods is clustimage,
“https://github.com/erdogant/clustimage

6 https://vehiclereid.github.io/VeRi/
7 https://opencv.org/
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4 Experiments and Results

We examine the clustering performance of AntClust on an image data set. We compare AntClust to
other cluster algorithms such as DBSCAN, HDBSCAN and OPTICS8 for reference. Additionally,
we perform testing on a self-defined artificial float data set to show that the clustering performance
of AntClust depends on the used ruleset. To evaluate the clustering performance, we used the
Adjusted Rand Index score. Adjusted Rand Index is defined as a similarity measure that computes
the differences in samples from a ground truth labeling to the provided labeling by the clustering
algorithm. The highest score is 1.0, which indicates a perfect labeling of the data. A score of 0.0
indicates a random labeling. If the score is negative, the labeling is even worse than a random
labeling.

We analyze the clustering performance for images in the following way. From the VeRi data set,
we select 30 distinct cars, where for each car we take 18 images showing the car from the front.
The images are used as a base to construct different clustering tasks. We start with only taking the
images of two cars to have a very simple clustering task of clustering the images into two different
clusters. Thereafter, images of three different cars, then four, until images of thirteen different cars
are used to generate the task of finding three, four and finally thirteen clusters. The clustering task
is harder if more clusters need to be found. To variate the tasks we change the amount of images
in each cluster. For each of the above tasks, we change the amount of images in each cluster from 3
to 18. Results of these tasks show that the clustering performance worsens when more clusters are
present - result can be seen in Figure 1 (B). For up to 10 clusters, the performance stays relatively
good. Having more clusters in the clustering performance drops significantly. It has no influence
on how many images are inside each cluster. The mean clustering performance only changes if the
numbers of clusters increases, not the number of images inside each cluster.

Declining in clustering performance for many clusters is expected due to the fact that there is only
one rule in the Labroche rule set, which is creating new clusters - and this rule is only applied in the
beginning of the clustering phases of AntClust. To test the hypothesis, we generated a simplistic,
one-dimensional data set which contains only float numbers that belong to a cluster. Each cluster
has an integer as a pivot element. The pivot elements are defined as P = {1, 2, ..., n}. Each data
point in a cluster differs from this pivot element by a range R = [−0.1, 0.1]. The data set is then
defined as D = {di|di = x+r, x ∈ P, r ∈ R}. This creates a very clear and easy clustering task that
can easily be extended to many clusters or data tuples in each cluster. We generate N clusters,
each cluster having the exact same amount of data tuples d in it. We start with N = 2 clusters,
each with d = 3 tuples. Then increase the number of tuples up until d = 90 in each cluster. After
that, we incremented the number of clusters by one and started again with d = 3 tuples in each
cluster, increasing them to d = 90. We proceeded until we reached N = 30 clusters. Meaning in
the last test, we have 30 clusters, each having 90 data tuples in it. The clustering result gets worse
if more than 5 clusters are present in the artificially generated data - as seen in Figure 1 (A). This
supports the finding that AntClust does not handle many clusters in a data set. However, the tests
revealed only the performance on this particular artificial data set. Since AntClust only sees the
data in the form of similarity, this should however show the performance trend, the direction in
which the performance for many clusters will evolve.

As reference, we test AntClust against DBSCAN, HDBSCAN and OPTICS. The task for all algo-
rithms is to cluster data sets containing images of cars. Each cluster contains 18 images of cars.
The Number of cars - and thus the number of clusters to be found - is varied from 2 to 30. For each
algorithm, the found clustering partition is evaluated using the ARI score. We pre-compute a dis-
tance matrix with our similarity function and provide it to the algorithms. Therefore the clustering
task is exactly the same for all algorithms. Results show that it depends on the number of clusters
which algorithm performs best. In this task, AntClust delivers the best clustering partitioning. All
ARI scores for the respective algorithms and their mean score are shown in Table 2.

8 we use the scikit-learn implementation with the default parameters except for DBSCAN where we set
eps=0.33 and min-samples=2
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AntClust can be a clustering algorithm of choice if not many clusters are expected in the data.
A good reason for using AntClust is that it does not need to know how many clusters reside in
the given data set. This is a significant improvement over clustering algorithms such as K-means
which require the number of clusters to be found as an input parameter.

Table 2. ARI clustering score for different amounts of clusters inside the car image data set. In the case
of two clusters, images from two cars were used, and images of four cars were used to have four clusters.
Mean represents the mean ARI score for all cluster numbers.

Clusters 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 Mean

AntClust 0.31 0.74 0.66 0.78 0.66 0.69 0.69 0.66 0.63 0.65 0.59 0.61 0.6 0.57 0.53 0.62

DBSCAN 0.75 0.73 0.74 0.73 0.72 0.34 0.23 0.2 0.17 0.21 0.15 0.11 0.083 0.059 0.062 0.35

HDBSCAN 0.86 0.76 0.55 0.71 0.65 0.49 0.45 0.48 0.41 0.4 0.36 0.41 0.38 0.35 0.39 0.50

OTICS 0.45 0.63 0.29 0.45 0.39 0.27 0.28 0.24 0.16 0.17 0.12 0.1 0.094 0.076 0.086 0.25

5 Conclusion and Future Work

We implemented AntClust and used our implementation to cluster images of cars taken from
the VeRi data set. We used ORB features extracted from the images to define the similarity
between images and matched the feature distances. The results show that AntClust performs well
on our chosen data set, outperforming DBSCAN, HDBSCAN or OPTICS. We found that clustering
performance gets significantly worse for the artificially generated float assembly data set if many
clusters are present.

An improvement factor in future work is the similarity function. We extract image features using
ORB. Currently, the similarity is calculated using only the distance between the nearest features in
all obtained features, meaning only one feature is used to obtain the similarity. As a future work,
more features should be used to have a more robust match. Additionally, the current approach
is not color-aware. It would be a benefit to include color-aware similarity measures. Generally -
as done in many classification tasks - using an ensemble of image similarity methods to improve
the overall performance of the similarity function would be necessary to test. We plan to test
the performance of these new similarity functions on more than one image data set. Having more
than one image data set will give a better generalized picture of the performance of the AntClust
algorithm used on images.

AntClust has the advantage that it does not need to know the numbers of clusters in the data
beforehand - such as k-means. Finding the number of clusters that best separates a given data set
is not a trivial task. Our tests show that despite not knowing how many clusters are existing in the
data, still, a good clustering result can be obtained. However, this is only true if the data does not
contain to many clusters. The reason for this is the following. The rule set used by AntClust should
be able to generate and change clusters dynamically. For example, the default Labroche rule set
will create new clusters with its rule R1 and alters clusters with rule R5. After the meeting phase,
AntClust will take care that only clusters with a high fitness exists by deleting clusters with lower
fitness in the nest shrink step (see Table 1). In theory, this should lead to the best partitioning, i.e.
the ”right” amount of clusters. From the results obtained by Labroche et al., it can be seen that
this works pretty well for data sets that have only up to four clusters [1]. As we showed, if more
clusters are inside the data, AntClust struggles with generating enough clusters. As suggested by
Labroche et al., this might be due to the fact that the only rule that can create new clusters is
rule R1. The problem here is that R1 is only applied if, during a meeting, both ants do not have
any labels. As such, in the beginning, R1 is applied very often, whereas in the end, R1 will never
be applied. If a particular cluster is not formed in the beginning, or if it is deleted during runtime,
it can not be recreated again. Therefore it would be necessary to alter the rule set in a way that
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it allows for creating new clusters even in the later phases of the algorithm. This is, however, a
challenging task. Our implementation opens the way for experimenting with different rule sets,
makeing it easy to change and replace the rule set via an informal interface in Python.

Future work will be on an automated rule set generation approach. Neuronal networks could
be trained and used as a rule set - and might be trained by neural evolution mechanisms such
as NeuroEvolution of Augmenting Topologies (NEAT) [8]. Rule sets or rule mechanisms could
be evolved using genetic algorithms or a gene expression programming (GEP) approach. This
will result in a bio-inspired algorithm based on the chemical recognition system in ants and the
evolutionary algorithm for more complete and accurate results. It enables bio-inspired algorithms
to enhance each other and become better together.
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Abstract. In this paper, we try to clarify the effects of noise contained in the images within image 

classification tasks by analyzing two different types of noise (Salt and Pepper, Gaussian) with five different 

levels on three Convolutional Neural Network (CNN) models (XceptionNet, GoogleNet, ResNet) using the 

same parameters (Dataset, noise, and level of noise), and how denoising methods can help to alleviate this 

problem, for the last matter, we consider two algorithms the median filter for the salt and pepper noise, and 

the non-local means (NLM) for the gaussian noise.  

We perform our experiments with the Cifar-10 dataset, our results show that noise in images can hinder 

classification tasks and cause it a problem (make it harder to separate classes). Although images were 

denoised, we were unable to reach the results obtained in the noise-free scenarios. 

Keywords: Classification, Noise, Denoising, Convolution, Neural Network 

1 Introduction 

According to literature, nearly 90% of the information received by humans is visual. Hence the 

production of quality images, as well as their digital (and if possible) automatic processing, is therefore of 

considerable importance, while most of computer vision and classification systems neglect pre-processing 

[08] and assume that images are given with high quality [04].  

In the internet, in our phones and laptops, Millions of pictures ranging from biomedical images to 

the images of natural surroundings, such pictures might contain a lot of important information in diverse 

domains of application, which represent a primary source of information and/or visualization. The quality of 

the output image may be inferior to that of the original input picture when converted from one form to 

another by processes like imaging, scanning, or transmitting. Hence, there is a need to improve the quality of 

such images, so that the output image is better for human perception or machine analysis.  

Nowadays Image classification is used in various applications, such as agricultural [01], educational 

and medical [05].  Our work is a part of the classification of images using deep learning which is a learning 

technique that enables a program, for example, to understand spoken language or recognize the content of an 

image allowing machines to learn and recognize objects, now back to our work, it is about of a set of 

comparisons between three architectures of convolutional neural networks. We aim to create a certain 

number of classifiers to images that contains noise and their restored versions, the results will be compared 

with each other to see the resilience of Convolutional Neural Networks (CNN) over distinct type of noise 

with different levels. 

2 Related works 

This is not the first time such experimentation is done to understand the impact of noisy images (in 

any way possible) in the performance of CNNs within image classification tasks. There are papers studying 

the effects of noise in the capability of CNNs to learn [02], [07].  

Noise in images can hinder classification tasks; this knowledge is already discovered with systems 

that employ convolutional Neural Networks [06], and in systems that use handcrafted features. In [04] They 

evaluated 4 deep neural network architectures, they show that the performance of these networks is affected 

when classifying images with lower quality compared with the image quality in the training set, their 

experiments do not cover the presence of noisy images in the training set.  

https://www.sciencedirect.com/topics/engineering/image-classification
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While Paranhos da Costa et al in [03] takes in consideration that noisy images might appear in the 

training set, they created noisy versions and generated their restored versions, they used hand-crafted 

features (LBP and HOG) and SVM classifiers were trained with each version of the training set. Their 

results show that classifiers suffer to generalize to different noisy data and image classification becomes 

harder. 

Our work is an extension of [03]. As all we believe that noise in any way possible, makes 

classification more difficult, our experiments exploited state of the art deeper artificial neural network 

architectures such as RESNET and XCEPTIONET, second, we train all the architectures using the same 

dataset version for better comparison. 

3 Results and Discussion 

To evidently visualize the impact of noise and filtering methods in the image quality, the structural 

similarity index measure (SSIM) [09] and the peak signal-to-noise ratio (PSNR) [10] values are shown in 

TABLE I. 

Smaller values in both the PSNR and SSIM indicate less similarity between the images of the 

original dataset version and the version compared to. By comparing the results while training and testing our 

chosen models with the same dataset (same noise and level) we can see how much harder separating 

between classes gets for these models. It has long been clear that increasing noise levels have undesired 

consequences. To better understand this, TABLE II shows the accuracy of our selected models trained on 

noisy datasets and their restored versions. 
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P = 0.1 0.76 0.97 15.26 25.39 

P = 0.2 0.60 0.95 12.46 23.47 

P = 0.3 0.48 0.93 10.90 21.19 

P = 0.4 0.41 0.88 9.85 18.92 

P = 0.5 0.34 0.82 9.08 16.87 
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 = 10 0.87 0.87 16.92 17.17 

 = 20 0.73 0.77 14.22 15.50 

 = 30 0.58 0.67 12.45 15.29 

 = 40 0.44 0.54 11.20 14.62 

 = 50 0.31 0.45 10.28 13.77 

TABLE I SSIM AND PSNR FOR EACH  

NOISE LEVEL 

 

 

 

 

XceptionNet GoogleNet  ResNet 
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P = 0.1 77.12 81.15 77.98 80.12 66.07 73.04 

P = 0.2 74.47 78.50 72.11 77.84 62.89 72.38 

P = 0.3 66.26 76.14 67.59 75.61 58.22 69.38 

P = 0.4 62.77 72.88 62.48 74.80 51.43 67.33 

P = 0.5 57.02 74.43 57.06 73.30 49.04 64.94 

G
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 = 10 76.76 69.92 73.70 68.02 68.11 63.29 

 = 20 75.24 70.45 73.82 71.42 68.21 63.61 

 = 30 60.37 62.54 66.58 58.97 62.31 56.98 

 = 40 52.33 55.69 51.44 44.99 47.32 52.15 

 = 50 27.97 51.54 25.60 51.28 23.19 46.83 

TABLE II PERCENTAGE ACCURACY 

OF EACH MODEL WHEN TRAINING 

AND TESTING USING THE SAME 

DATASET VERSION 

our scrutiny is divided into two steps (in both steps we chose the middle level of noise to work with 

throughout this scrutiny):  

A. Inter-models: The goal here, is to visualize which architecture is better resilient when dealing 

with noise in datasets, and see how much harder classifying these image datasets gets. Even so it seems that 

GoogleNet did the great work but in general, and accordingly to TABLE II the XceptionNet model did 

better than the other models when dealing with noisy dataset.  

B. Intra-models: Here we compare the obtained accuracies using the same model with three datasets 

(noise-free, noisy, denoised) the goal is to see how the image quality affect the models, and how much the 

denoising methods are helping in the cases that of noisy images. To display the importance/effects of de-
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noising methods, and how they are helping override this hurdle the results shown in TABLE II are plotted 

in Fig. 1 and Fig. 2. 

 
Fig. 1. Comparison of the accuracy of each network while 

training with Salt and Pepper noisy datasets and de-noised 

ones using median filter (a) results using ResNet 

architecture (b) results using GoogleNet architecture (c) 

results using XceptionNet architecture. 

 
Fig. 2. Comparison of the accuracy of each network while 

training with Gaussian noisy datasets and de-noised ones 

using NLM filter (a) results using ResNet architecture (b) 

results using GoogleNet architecture (c) results using 

XceptionNet architecture.

 

4 Conclusion 

Training deep convolutional neural networks with datasets after adding noise to their images at a 

known level has shown how hard classifying these images gets, our study covered two types of noise with 

five levels for each type, likewise you can test other types of noise with different models. Our results show 

that the CNN architectures are having a hard time classifying the images affected by noise in both training 

and test sets. 

Regarding the noise reduction algorithms, the dataset restored by median filtering where able to 

improve accuracy and image quality compared to their Salt and Pepper noisy counterparts, but in the other 

hand, datasets versions that were hindered with Gaussian noise gave better results than their restored 

counterparts using NLM filter, that’s because of the resulted blur in the image after using the NLM filter.  

The final point of this paper is that the more noise you add to an image, the harder it is to classify. 

References 

[01] Gill, H. S., Khalaf, O. I., Alotaibi, Y. Alghamdi, S. & Alassery, F. (2022). Fruit Image 

Classification Using Deep Learning. Computers, Materials and Continua, 71(2), 5135–5150.  

[02] AJ. Bekker and J.Goldberger(2016). Training deep neural networks based on unreliable labels.  

[03] GB. P. da Costa, WA. Contato, TS. Nazare, JE. S. BNeto, and M. Ponti (2016). An empirical 

study on the effects of different types of noise in image classification tasks. 

[04] S. Dodge and L. Karam (2016). Understanding how image quality affects deep neural networks. 

[05] AH. Khan, S. Abbas,MA. Khan, U. Farooq, WA. Khan, SY. Siddiqui, and A. Ahmad (2022). 

Intelligent Model for Brain Tumor Identification Using Deep Learning. Applied Computational 

Intelligence and Soft Computing. 

[06] M. Momeny, Ali M. Latif, M. Agha Sarram, R. Sheikhpour, YD. Zhang (2021), A noise robust 

convolutional neural network for image classification, Results in Engineering, Volume 10. 

[07] DF. Nettleton, A. Orriols-Puig, and A. Fornells (2010). A study of the effect of different types of 

noise on the precision of supervised learning techniques. Artificial Intelligence Review, 33.  

[08] M. Ponti, TS. Nazaré, and GS. Thumé (2016). Image quantization as a dimensionality reduction 

procedure in color and texture feature extraction. Neurocomputing, 173.  

[09] De Rosal Igantius Moses Setiadi (2021). Psnr vs ssim: imperceptibility quality assessment for 

image steganography. Multimedia Tools and Applications, 80.  

[10] Z. Wang, AC. Bovik, HR. Sheikh, and Eero P. Simoncelli (2004). Image quality assessment: 

From error visibility to structural similarity. IEEE Transactions on Image Processing, 13.  



Implementation of Metaheuristic Search for Finding

Shortest Path in Tunnelled Network

Habiba Akter∗1

1Queen Mary, University of London – United Kingdom

Abstract

This work investigates the implementation of an Evolutionary Algorithm (EA) as a meta-
heuristic search tool to design a path computation tool to help find the shortest path(s) from
a source node to a destination node to send data over. The bespoke tool will also provide
an additional benefit of loose source routing in a scenario where internet tunnels are present
in a part of the network topology. However, the EA-generated optimal paths may or may
not have tunnels present in them but the costs associated will be optimised using the evo-
lutionary computation. The objective functions for optimisation will be designed based on
the cost values associated with the end-to-end path.
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